Room temperature zeolitization of boiler slag from a Bulgarian thermal power plant

Radost Dimitrova Pascova, Valeria B. Stoyanova, Annie S. Shoumkova


A simple and cost-effective method was applied for the synthesis of zeolite composites utilising wet bottom boiler slag from the Bulgarian coal-
-fired thermal power plant “Sviloza”, near the town of Svishtov. The method consisted of a prolonged alkali treatment at room temperature of this waste. Experimental techniques, such as scanning electron microscopy, energy-dis­persive X-ray and X-ray diffraction analyses, were employed to characterize the initial slag and the final products with respect to their morphology, and ele­mental and mineral compositions. The composites synthesized in this way contained two Na-type zeolite phases: zeolite X (type FAU) and zeolite Linde F (type EDI). The zeolited products and the starting slag were tested as ads­orbents for a textile dye (Malachite Green) from aqueous solutions. In com­parison with the initial slag, the zeolite composite possessed substantially better adsorption properties: it almost completely adsorbed the dye in much shorter times. The results of this investigations revealed a new, easy and low cost route for recycling boiler slag into a material with good adsorption characteristics, which could find different applications, e.g., for purifying polluted waters, including those from the textile industry.


waste recycling; zeolite X; zeolite Linde F(Na); dye removal; adsorption.


Joint EURELECTRIC/ECOBA Briefing: The Classification of Coal Combustion Products under the revised Waste Framework Directive (2008/98/EC, /evjm,media/downloads/ECOBA_EURELECTRIC_Commission_Brief_June_2011.pdf (23.05.2016)

User Guidelines for Waste and By-product Materials, in Pavement Construction, Publ. Numb. FHWA-RD-97-148, Federal Highway Administration, 1998

X. Querol, N. Moreno, J. C. Umana, A. Alastuey, E. Hernandez, A. Lopez-Soler, F. Plana, Int. J. Coal Geol. 50 (2002) 413

B. W. Ramme, M. P. Tharaniyil, Coal Combustion Products Utilization Handbook, 3rd ed., We Energies, Wisconsin Electric Power Company, Milwaukee, WI, 2013

N. L. Hecht, D. S. Duvall, in Characterization and Utilization of Municipal and Utility Sludges and Ashes, Vol. III, National Environmental Research Center, U.S. Environ¬mental Protection Agency, 1975

M. Ahmaruzzaman, Prog. Energy Combust. Sci. 36 (2010) 327

R. S. Blissett , N. A. Rowson, Fuel 97 (2012) 1

A. Shoumkova, Res. Bull. Aus. Inst. High Energetic Mater. 2 (2011) 10–70

N. Moreno, X. Querol, C. Ayora, C. F. Pereira, M. Janssen-Jurkovicova, Environ. Sci. Technol. 35 (2001) 3526

C. D. Woolard, J. Strong, C. R. Erasmus, Appl. Geochem. 17 (2002) 1159

D. Vucinic, I. Miljanovic, A. Rosic, P. Lazic, J. Serb. Chem. Soc. 68 (2003) 471

M. Inada, Y. Eguchi, N. Enomoto, J. Hojo, Fuel 84 (2005) 299

S. Wang, M. Soudi, L. Li, Z. H. Zhu, J. Hazard. Mater., B 133 (2006) 243

C. Wang, J. Li, L. Wang, X. Sun, J. Huang, Chin. J. Chem. Eng. 17 (2009) 513

T. E. M. de Carvalho, D. A. Fungaro, C. P. Magdalena, P. Cunico, J. Radioanal. Nucl. Chem. 289 (2011) 617

A. Shoumkova, V. Stoyanova, Ts. Tsacheva, Compt. Rend. Acad. Bulg. Sci. 64 (2011) 937

P. Petrov, PhD Thesis, HTMU, Sofia, 2011, /avtoreferat_Petar%20GPetrov.pdf

J. de C. Izidoro, D. A. Fungaro, J. E. Abbott, S. Wang, Fuel 103 (2013) 827

L. B. Sand, A. Sacco Jr., R. W. Thompson, A. G. Dixon, Zeolites 7 (1987) 387

S. Mintova, N. H. Olson, V. Valtchev, T. Bein, Science 283 (1999) 958

V. P. Valtchev, K. N. Bozhilov, J. Phys. Chem., B 108 (2004) 15587

X. Zhang, D. Q. Tong, J. J. Zhao, X. Y. Li, Mater. Lett. 104 (2013) 80

A. Derkowski, W. Franus, H. Waniak-Nowicka, A. Czimerova, Int. J. Miner. Process. 82 (2007) 57

W. Franus, Pol. J. Environ. Stud. 21 (2012) 337

C. Belviso, F. Cavalcante, F. J. Huertas, A. Lettino, P. Ragone, S. Fiore, Micropor. Mesopor. Mater. 162 (2012) 115

D. Zgureva, S. Boycheva, Synthesis of Highly Porous Micro- and Nanocrystalline Zeo¬lites from Aluminosilicate By-Products, in Nanoscience Advances in CBRN Agents Detection, Information and Energy Security, P. Petkov, D. Tsiulyanu, W. Kulisch, C. Popov, Eds., Springer, Berlin, 2015, p. 199

D. Zgureva, S. Boycheva, Ecolog. Eng. Environ. Protect. 2 (2015) 12

R. Terzano, C. D’Alessandro, M. Spagnuolo, M. Romagnoli, L. Medici, Clean – Soil, Air, Water 42 (2014) 1

M. M. J. Treacy, J. B. Higgins, Collection of simulated XRD powder patterns for zeolites, Str. Comm. IZA. 5th rev. ed., Elsevier, London, 2001

R. Han, Y. Wang, Q. Sun, L. Wang, J. Song, X. He, C. Dou, J. Hazard. Mater. 175 (2010) 1056

Z. Ghasemi, I. Sourinejad, H. Kazemian, S. Rohani, Rev. Aquacult. (2016), doi: 10.1111/raq.12148

C. S. Cundy, P. A. Cox, Micropor. Mesopor Mater. 82 (2005) 1

P. Khemthong, S. Prayoonpokarach, J. Wittayakun, Suranaree J. Sci. Technol. 14 (2007) 367

A. Shoumkova, V. Stoyanova, Fuel 103 (2013) 533

C. W. Purnomo, C. Salim, H. Hinode, Micropor. Mesopor. Mater. 162 (2012) 6

J. Chumee, World Acad. Sci. Eng. Technol. 7 (2013) 6

R. Panek, M. Wdowin, W. Franus, Springer Proc. Phys. 154 (2014) 45

C. Baerlocher, R. M. Barrer, Z. Kristallogr. 140 (1974) 10

F. Miyaji, T. Murakami, Y, Suyama, J. Ceram. Soc. Jpn. 117 (2009) 619

C. Chen, T. Cheng, Asian J. Chem. 25 (2013) 1811.

J. Schmelzer, J. Möller, I. Gutzow, R. Pascova, R. Müller, W. Pannhorst, J. Non-Cryst. Solids 183 (1995) 215

I. Gutzow, R. Pascova, A. Karamanov, J. Schmelzer, J. Mater. Sci. 33 (1998) 5265.


Copyright (c) 2016 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)