Microwave-assisted synthesis of azepines via nucleophilic aromatic substitution

Nina Božinović, Bogdan A. Šolaja, Igor A. Opsenica

Abstract


A novel and efficient route has been developed to afford 5H-dipyridoazepine derivatives from primary amines and 3,3'-(Z)-ethene-1,2-diylbis(4-chloropyridine). The protocol based on the double nucleophilic aromatic substitution provides a valuable synthetic tool for the synthesis of dipyridoazepines. The reaction proceeds without catalyst, under microwave irradiation condition.

Keywords


azepines; heterocycles; nucleophilic aromatic substitution; transition-metal-free conditions, microwave irradiation

References


H. V. Kumar, N. Naik, Eur. J. Med. Chem. 45 (2010) 2

M. P. Sadashiva, Basappa, S. Nanjunda Swamy, F. Li, K. A. Manu, M. Sengottuvelan, D. S. Prasanna, N. C. Anilkumar, G. Sethi, K. Sugahara, K. S. Rangappa, BMC Chem. Biol. 12 (2012) 5

B. LeDuc, in Foye's Principles of Medicinal Chemistry, 6th ed., T. L. Lemke, D. A. Wil¬liams, Eds., Lippincott Williams & Wilkins, Philadelphia, PA, 2007, p. 521

K. C. Miles, in Emergency medicine: a comprehensive study guide, 6th ed., J. E. Tinti-nalli, G. D. Kelen, J. S. Stapczynski, Eds., McGraw–Hill, New York, 2004, p. 1025

a) L. J. Kricka, A. Ledwith, Chem. Rev. 74 (1974) 101, and references cited therein; b) A. Knell, D. Monti, M Maciejewski, A. Baiker, Appl. Catal., A 121 (1995) 139; c) G. P. Tokmakov, I. I. Grandberg, Tetrahedron 51 (1995) 2091; d) E.-C. Elliott, E. R. Bowkett, J. L. Maggs, J. Bacsa, B. K. Park, S. L. Regan, P. M. O’Neill, A. V. Stachulski Org. Lett. 13 (2011) 5592; e) T. Matsuda, S. Sato, J. Org. Chem. 78 (2013) 3329; f) E.-C. Elliott, J. L. Maggs, B. K. Park, P. M. O’Neill, A. V. Stachulski, Org. Biomol. Chem. 11 (2013) 8426; g) L. A. Arnold, W. Luo, R. K. Guy, Org. Lett. 6 (2004) 3005; h) D. Tsvelikhov¬sky, S. L. Buchwald, J. Am. Chem. Soc. 132 (2010) 14048; i) N. Della Ca', G. Maestri, M. Malacria, E. Derat, M. Catellani, Angew. Chem. Int. Ed. 50 (2011) 12257; j) M. Tian, A. Abdelrahman, S. Weinhausen, S. Hinz, S. Weyer, S. Dosa, A. El-Tayeb, C. E. Müller, Bioorg. Med. Chem. 22 (2014) 1077

a) H. Christensen, C. Schjøth-Eskesen, M. Jensen, S. Sinning, H. H. Jensen, Chem. Eur. J. 17 (2011) 10618; b) X. Zhang, Y. Yang, Y. Liang, Tetrahedron Lett. 53 (2012) 6406

N. Božinović, I. Opsenica, B. A. Šolaja, Synlett 24 (2013) 49

N. Božinović, I. Novaković, S. Kostić Rajačić, I. M. Opsenica, B. A. Šolaja, J. Serb. Chem. Soc. 80 (2015) 839

a) J. P. Wibaut, F. W. Broekman, Rec. Trav. Chim. Pays-Bas 80 (1961) 309; b) S. Hashimoto, S. Otani, T. Okamoto, K. Matsumoto, Heterocycles 27 (1988) 319; c) Y.-K. Lee, D. J. Parks, T. Lu, T. V. Thieu, T. Markotan, W. Pan, D. F. McComsey, K. L. Milkiewicz, C. S. Crysler, N. Ninan, M. C. Abad, E. C. Giardino, B. E. Maryanoff, B. P. Damiano, M. R. Player, J. Med. Chem. 51 (2008) 282; d) B. C. Pérez, C. Teixeira, I. S. Albuquerque, J. Gut, P. J. Rosenthal, J. R. B. Gomes, M. Prudêncio, P. Gomes, J. Med. Chem. 56 (2013) 556

N. Božinović, S. Šegan, S. Vojnovic, A. Pavic, B. A. Šolaja, J. Nikodinovic-Runic, I. M. Opsenica, Chem. Biol. Drug Des. 88 (2016) 795.




DOI: https://doi.org/10.2298/JSC160824074B

Copyright (c) 2016 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)