Dispersive solid phase micro-extraction of mercury(II) from environmental water and vegetable samples with ionic liquid modified graphene oxide nanoparticles

Atefeh Nasrollahpour, Seyyed Mohammad Javad Moradi, Seyyed Ershad Moradi


A new dispersive solid phase micro-extraction (dispersive-SPME) method for separation and preconcentration of mercury(II) using ionic liquid modified magnetic reduced graphene oxide (IL-MrGO) nanoparticles, prior to the measurement by cold vapour atomic absorption spectrometry (CV-AAS) has been developed. The IL-MrGO composite was characterized by Brunauer–Emmett–Teller method (BET) for adsorption-desorption measurement, thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The method is based on the sorption of mercury(II) on IL-MrGO nanoparticles due to electrostatic interaction and complex formation of ionic liquid part of IL-MrGO with mercury(II). The effect of experimental parameters for preconcentration of mercury(II), such as solution type, concentration and volume of the eluent, pH, time of the sorption and desorption, amount of the sorbent and coexisting ion concentration have been optimized. Under the optimized conditions, a linear response was obtained in the concentration range of 0.08–10 ng mL-1 with a determination coefficient of 0.9995. The limit of detection (LOD) of the method at a signal to noise ratio of 3 was 0.01 ng mL-1. Intra-day and inter-day precisions were obtained equal to 3.4 % and 4.5 %, respectively. The dispersive solid phase micro-extraction of mercury(II) on IL-MrGO nanoparticles coupled with cold vapour atomic absorption spectrometry was successfully used for extraction and determination of mercury(II) in water and vegetable samples


mercury(II); ionic liquid; magnetic reduced graphene oxide; cold vapour atomic absorption spectrometry; dispersive solid phase micro-ext¬raction.


F. E. Chigbo, R. W. Smith and F. L. Shore, Environ. Pollut. A 27 (1982) 31

R. K. Zalups, Pharmacol. Rev. 52 (2000) 113

D. Sanchez-Rodas, W. T. Corns, B. Chen and P. B. Stockwell, J. Anal. At. Spectrom. 25 (2010) 933

M. Bettinelli, S. Spezia, A. Ronchi, and C. Minoia, Rapid Commun. Mass Spectrom. 16 (2002) 1432

B. B. A. Francisco, A. A. Rocha, P. Grinberg, R. E. Sturgeon and R. J. Cassella, J. Anal. At. Spectrom. 31 (2016) 751

D.-q. Zhang, L.-l. Yang and H.-w. Sun, Anal. Chim. Acta, 395 (1999) 173

W. Jiang, J. Lv, L. Luo, K. Yang, Y. Lin, F. Hu, J. Zhang and S. Zhang, J. Hazard. Mater. 262 (2013) 55

R. A. Vanderpool and W. T. Buckley, Anal. Chem. 71 (1999) 652

T. d. A. Maranhão, E. Martendal, D. L. G. Borges, E. Carasek, B. Welz and A. J. Curtius, Spectrochim. Acta, B 62 (2007) 1019

Y. Liu, X. Chang, S. Wang, Y. Guo, B. Din and S. Meng, Anal. Chim. Acta 519 (2004) 173

L. Berthod, G. Roberts, D. C. Whitley, A. Sharpe and G. A. Mills, Water Res. 67 (2014) 292

S. Cerutti, M. F. Silva, J. A. Gásquez, R. A. Olsina and L. D. Martinez, Spectrochim. Acta, B 58 (2003) 43

S. L. C. Ferreira, J. B. de Andrade, M. d. G. A. Korn, M. d. G. Pereira, V. A. Lemos, W. N. L. d. Santos, F. d. M. Rodrigues, A. S. Souza, H. S. Ferreira and E. G. P. da Silva, J. Hazard. Mater. 145 (2007) 358

G. Lasarte-Aragonés, R. Lucena, S. Cárdenas and M. Valcárcel, Anal. Bioanal. Chem. 405 (2013) 3269

J. Qiao, M. Wang, H. Yan and G. Yang, J. Agric. Food. Chem. 62 (2014) 2782

F.-J. Liu, C.-T. Liu, W. Li and A.-N. Tang, Talanta 132 (2015) 366

C. Chen, X. Zhang, Z. Long, J. Zhang and C. Zheng, Microchim. Acta 178 (2012) 293

M. Ghorbani, M. Chamsaz and G. H. Rounaghi, J. Sep. Sci. 39 (2016) 1082

V. Chandra, J. Park, Y. Chun, J. W. Lee, I.-C. Hwang and K. S. Kim, ACS Nano 4 (2010) 3979

J. Sun, Q. Liang, Q. Han, X. Zhang and M. Ding, Talanta 132 (2015) 557

B. Zawisza, R. Sitko, E. Malicka and E. Talik, Anal. Methods 5 (2013) 6425

H. Yan, M. Gao and J. Qiao, J. Agric. Food. Chem. 60 (2012) 6907

P. Su, R. Wang, Y. Yu and Y. Yang, Anal. Methods 6 (2014) 704

L. Vidal, M.-L. Riekkola and A. Canals, Anal. Chim. Acta 715 (2012) 19

F. O. Pelit, L. Pelit, T. N. Dizdaş, C. Aftafa, H. Ertaş, E. E. Yalçınkaya, H. Türkmen and F. N. Ertaş, Anal. Chim. Acta 859 (2015) 37

M. Cordero-Vaca, M. J. Trujillo-Rodríguez, C. Zhang, V. Pino, J. L. Anderson and A. M. Afonso, Anal. Bioanal. Chem. 407 (2015) 4615

T.-T. Wang, Y.-H. Chen, J.-F. Ma, M.-J. Hu, Y. Li, J.-H. Fang and H.-Q. Gao, Anal. Bioanal. Chem. 406 (2014) 4955

F. Galán-Cano, R. Lucena, S. Cárdenas and M. Valcárcel, Microchem. J. 106 (2013) 311

D. Han, B. Tang and K. H. Row, Anal. Lett. 46 (2013) 2359

H. Yan, M. Gao, C. Yang and M. Qiu, Anal. Bioanal. Chem. 406 (2014) 2669

N. Fasih Ramandi and F. Shemirani, Talanta 131 (2015) 404

G. Fagerlund, Mater. Constr. 6 (1973) 239

S.E. Moradi, Appl. Phys. A. 119 (2015) 179

C. Wang, Y. Chen, K. Zhuo and J. Wang, Chem. Commun. 49 (2013) 3336

I. Dakova, I. Karadjova, V. Georgieva and G. Georgiev, Talanta 78 (2009) 523

E. Ziaei, A. Mehdinia and A. Jabbari, Anal. Chim. Acta 850 (2014) 49

L. Adlnasab, H. Ebrahimzadeh, A. A. Asgharinezhad, M. N. Aghdam, A. Dehghani and S. Esmaeilpour, Food. Anal. Method. 7 (2014) 616

M. H. Mashhadizadeh, M. Amoli-Diva, M. R. Shapouri and H. Afruzi, Food Chem. 151 (2014) 300

R. Gao, Z. Hu, X. Chang, Q. He, L. Zhang, Z. Tu and J. Shi, J. Hazard. Mater. 172 (2009) 324

L. Zhang, X. Chang, Z. Hu, L. Zhang, J. Shi and R. Gao, Microchim. Acta 168 (2010) 79.

DOI: https://doi.org/10.2298/JSC161013035N

Comments on this article

View all comments

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)