Pressure drop behavior and mass transfer properties of a high specific area random type packing in a narrow packed column

Mohammad Ghomi Avili, Javad Karimi Sabet, Seyyed M. Ghoreishi


In this paper, comprehensive experimental examinations are conducted to investigate the mass transfer properties of Dixon ring packing. The main aspect of this study is to investigate the characteristics of Dixon ring packing using a narrow packed column. Firstly, mass transfer properties of the packing were investigated using distillation experiments at total reflux. Afterwards, pervasive experiments were conducted to plot the Generalized Pressure Drop Correlation chart. Finally, the variation of Height Equivalent to a Theoretical Plate (HETP) was determined at total reflux operations for various vapor loading factors. Our findings showed that increasing the vapor loading factor up to 0.62 Pa0.5 would eventually decrease the HETP. It was also shown that further increase in the vapor loading factor results in a sudden increase in the HETP value. According to our findings, selection of the optimum vapor loading factor would enhance the value of HETP up to more than 57 %.


Dixon ring; packing characterization; distillation column; packed bed; narrow column; GPDC chart

Full Text:

PDF (1,223 kB)


D. C. Dumitrache, B. De Schutter, A. Huesman, E. Dulf, J. Process Contr. 22 (2012) 798

E. H. Dulf, C. I. Pop, F. Dulf, Sep. Sci. Technol. 47 (2012) 1234

H. L. Li, Y. L. Ju, L. J. Li, D. G. Xu, Chem. Eng. Process. 49 (2010) 255

C. I. Pop, E. H. Dulf, J. Control. Eng. Appl. Inform. 12 (2010) 36

B. M. Andreev, Separation of isotopes of biogenic elements in two-phase systems, Elsevier, Amsterdam, 2006

H. Weng, J. Luo, Y. Yin, Z. Duan, Y. Sha, L. Ye, S. Tu, Y. Lai, Chem. Eng. Process. 72 (2013) 68

J. Lévêque, D. Rouzineau, M. Prévost, M. Meyer, Chem. Eng. Sci. 64 (2009) 2607

Ž. Olujić, M. Behrens, L. Spiegel, Ind. Eng. Chem. Res. 46 (2007) 883

S. Nakov, N. Kolev, L. Ljutzkanov, D. Kolev, Chem. Eng. Process. 46 (2007) 1385

N. Kolev, S. Nakov, L. Ljutzkanov, D. Kolev, Chem. Eng. Process. 45 (2006) 429

A. Senol, Chem. Eng. Process. 40 (2001) 41

K. Allen, T. Von Backström, D. Kröger, Powder technol. 246 (2013) 590

T. Yamanishi, M. Kinoshita, J. Nucl. Sci. Technol. 21 (1984) 853

T. Yamanishi, M. Kinoshita, J. Nucl. Sci. Technol. 21 (1984) 61

Ž. Olujić, A. Seibert, B. Kaibel, H. Jansen, T. Rietfort, E. Zich, Chem. Eng. Process. 42 (2003) 55

L. Del Carlo, Ž. Olujić, A. Paglianti, Ind. Eng. Chem. Res. 45 (2006) 7967

C. Jiangbo, L. Chunjiang, Y. Xigang, Y. Guocong, Chinese J. Chem. Eng. 17 (2009) 381

V. Bessou, D. Rouzineau, M. Prévost, F. Abbé, C. Dumont, J. P. Maumus, M. Meyer, Chem. Eng. Sci. 65 (2010) 4855

Z. A. Olujić, T. Rietfort, H. Jansen, B. R. Kaibel, E. Zich, G. N. Frey, G. Ruffert, T. Zielke, Ind. Eng. Chem. Res. 51 (2012) 4414

C. Wang, M. Perry, G. T. Rochelle, A.F. Seibert, Energy Proced. 23 (2012) 23

Z. Olujic, B. Kaibel, H. Jansen, T. Rietfort, E. Zich, Ind. Eng. Chem. Res. 52 (2013) 4888

E. Herington, Pure Appl. Chem. 51 (1979) 2421

H. Z. Kister, Distillation design, McGraw-Hill, New York, 1992

GPSA Engineering Databook, 12th ed., GPSA press, Tulsa, OK, 2004.


Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)