Study of pyrolysis of high density polyethylene in the open system and estimation of its capability for co-pyrolysis with lignite

Ivan Kojić, Achim Bechtel, Friedrich Kittinger, Nikola Stevanović, Marko Obradović, Ksenija Stojanović

Abstract


Pyrolysis of high density polyethylene (HDPE) in the open system was studied. Plastic bag for food packing was used as a source of HDPE. Pyrolysis was performed at temperatures of 400 oC, 450 oC and 500 oC, which were chosen based on thermogravimetric analysis. The HDPE pyrolysis yielded liquid, gaseous and solid products. Temperature rise resulted in increase conversion of HDPE into liquid and gaseous products. The main constituents of liquid pyrolysates are 1-n-alkenes, n-alkanes and terminal n-dienes. Composition of liquid products indicates that performed pyrolysis of HDPE could not serve as a standalone operation for producing of gasoline or diesel, but preferably as a pretreatment to yield a product to be blended into a refinery or petrochemical feed stream. Advantage of liquid pyrolysate in comparison to crude oil is extremely low content of aromatic hydrocarbons and absence of polar compounds. Gaseous products have desirable composition and consist mainly of methane and ethene. Solid residues do not produce ash by combustion and have high calorific values. Co-pyrolysis of HDPE with mineral-rich lignite indicated positive synergetic effect at 450 oC and 500 oC, which is reflected through increased experimental yields of liquid- and gaseous products in comparison to theoretical ones. 


Keywords


High density polyethylene; open pyrolysis system; TGA-FTIR; GC-MS; lignite; synergetic effect

Full Text:

PDF (1,614 kB)

References


S. Kumar, R.K. Singh, Braz. J. Chem. Eng. 28 (2011) 659

S. Kumar, A.K. Panda, R.K. Singh, Resour. Conserv. Recy. 55 (2011) 893

P.N. Sharratt, Y.H. Lin, A.A. Garforth, J. Dwyer, ‎Ind. Eng. Chem. Res. 36 (1997) 118

J.W. Park, J.H. Kim, G. Seo, Polym. Degrad. Stab. 76 (2002) 495

S. Ali, A.A. Garforth, D.H. Harris, D. J. Rawlence, Y. Uemichi, Catal. Today 75 (2002) 247

A. Aboulkas, T. Makayssi, L. Bilali, K. El harfi, M. Nadifiyine, M. Benchanaa, Fuel Process. Technol. 96 (2012) 209

S. Matali, N.A. Rahman, S.S. Idris, A.B. Alias, M.R. Mohatar, J. Teknol. 76 (2015) 21

J. Cai, Y. Wang, L. Zhou, Q. Huang, Fuel Process. Technol. 89 (2008) 21

S. Melendi-Espina, R. Alvarez, M.A. Diez, M.D. Casal, Fuel Process. Technol. 137 (2015) 351

L. Ballice, Fuel Process. Technol. 86 (2005) 673

M. Sert, L. Ballice, M. Yüksel, M. Sağlam, Oil Shale 26 (2009) 463

H. Pakdel, C. Roy, W. Kalkreuth, Fuel 78 (1999) 365

N. Vuković, D. Životić, J.G. Mendonça Filho, T. Kravić-Stevović, M. Hámor-Vidó, J. de Oliveira Mendonça, K. Stojanović, Int. J. Coal Geol. 154–155 (2016) 213

G.Đ. Gajica, A.M. Šajnović, K.A. Stojanović, M.D. Antonijević, N.M. Aleksić, B.S. Jovančićević, J. Serb. Chem. Soc. 82 (2017) 1461

V.V. Antić, M.P. Antić, A. Kronimus, K. Oing, J. Schwarzbauer, J. Anal. Appl. Pyrolysis 90 (2011) 93

V.V. Antić, M.P. Antić, A. Kronimus, J. Schwarzbauer, Hem. Ind. 66 (2012) 357

N.A. al Sandouk-Lincke, J. Schwarzbauer, V. Antić, M. Antić, J. Caase, S. Grünelt, K. Reßing, R. Littke, Org. Geochem. 88 (2015) 17

S. Khedri, S. Elyasi, Polymer Degrad. Stab. 129 (2016) 306

D. Mitrović, N. Đoković, D. Životić, A. Bechtel, A. Šajnović, K. Stojanović, Int. J. Coal Geol. 168 (2016) 80

N. Đoković, D. Mitrović, D. Životić, D. Španić, T. Troskot – Čorbić, O. Cvetković, K. Stojanović, J. Serb. Chem. Soc. 80 (2015) 575

D. Životić, K. Stojanović, I. Gržetić, B. Jovančićević, O. Cvetković, A. Šajnović, V. Simić, R. Stojaković, G. Scheeder, Int. J. Coal Geol. 111 (2013) 5

G.H. Taylor, M. Teichmüller, A. Davis, C.F.K. Diessel, R. Littke, P. Robert, Organic Petrology, Gebrüder Borntraeger, Berlin, Germany, 1998

L.J. Thomas, Coal Geology, John Wiley & Sons, Ltd, Chichester, UK, 2002

M. Kutz, Handbook of Environmental Degradation of Materials, 2nd Edition, Elsevier Inc., Oxford, Great Britain, 2012

B.P. Tissot, D.H. Welte, Petroleum Formation and Occurrence, 2nd Edition, Springer-Verlag, Heidelberg, Germany, 1984

J.A. González-Pérez, N.T. Jiménez-Morillo, J.M. de la Rosa, G. Almendros, F.J. González-Vila, J. Chromatogr. A 1388 (2015) 236

E.E. Bray, E.D. Evans, Geochim. Cosmochim. Acta 22 (1961) 2

K.E. Peters, C.C. Walters, J.M. Moldowan, The Biomarker Guide, Volume 1: Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, Cambridge, UK, 2005

A. Kostić, Termička evolucija organske supstance i modelovanje geneze nafte i gasa u Panonskom basenu (Srbija), University of Belgrade, Faculty of Mining and Geology, Belgrade, Serbia, 2010 (in Serbian with summary in English)

J. A.Onwudili, N. Insura, P.T. Williams, J. Anal. Appl. Pyrolysis 86 (2009) 293

C.A. Wilkie, Polymer Degrad. Stab. 66 (1999) 301

S. Singh, C. Wu, P.T. Williams, J. Anal. Appl. Pyrolysis 94 (2012) 99

M. Arias, I. Penichet, F. Ysambertt, R. Bauzab, M. Zougagh, Á. Ríos, J. Supercrit. Fluids 50 (2009) 22

S. Hosokai, K. Matsuoka, K. Kuramoto, Y. Suzuki, Fuel Process. Technol. 152 (2016) 399

A. Demirbaş, Energy Convers. Manag. 42 (2001) 183

H.H. Lowry, Chemistry of Coal Utilization, Vol. I, John Wiley & Sons Inc., New York, USA, 1947

F. Schuster, Brennst.-Chem. 25 (1934) 45

E.S. Grummel, I. Davies, Fuel 12 (1933) 199

J. Han, X. Yao, Y. Zhan, S-Y. Oh, L-H. Kim, H-J. Kim, J. Energy Inst. 90 (2017) 331

K. Annamalai, J. Sweeten, S. Ramalingam, Trans. ASAE 30 (1987) 1205

S. Kathiravale, M.N.M. Yunus, K. Sopian, A. Samsuddin, R. Rahman, Fuel 82 (2003) 1119

D.A. Tsiamis, M.J. Castaldi, Determining accurate heating values of non-recycled plastics (NRP), Earth Engineering Center City, University of New York, New York, USA, 2016

Environment & Plastics Industry Council (EPIC) a council of the Canadian Plastics Industry Association (CPIA), A Review of the Options for the Thermal Treatment of Plastics, CPIA, Mississauga, Ontario, Canada, 2004

N.J. Themelis, M.J. Castaldi, J. Bhatti, L. Arsova, Energy and economic value of nonrecycled plastics (NRP) and municipal solid wastes (MSW) that are currently landfilled in the fifty states. Earth Engineering Center, Columbia University, New York, New York, USA, 2011

Fuels higher calorific values, http://www.eisco.co/burner/FUELS%20HIGHER%20

CALORIFIC%20VALUES.pdf (last accessed February 5, 2018)

S.L. Wong, N. Ngadi, T.A.T. Abdullah, I.M. Inuwa, Renew. Sust. Energ. Rev. 50 (2015) 1167.




DOI: https://doi.org/10.2298/JSC171215027K

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)