Synthesis of sulfonamides bearing 1,3,5-triarylpyrazoline and 4-thiazolidinone moieties as novel antimicrobial agents

Main Article Content

Thi-Dan Thach
T. Tuong-Vi Le
H. Thien-An Nguyen
Chi-Hien Dang
Van-Su Dang
Thanh-Danh Nguyen
http://orcid.org/0000-0001-6330-8916

Abstract

Two series of sulfonamides were synthesized from 4-hydrazinyl­ben­zenesulfonamide as the key starting material. 1,3,5-Tri­arylpyrazoline sulfon­amides (2ai) were obtained by cyclocondensation of various chalcones in 53–64 % yields, while 4-thiazolidinone derivatives (4ae) were synthesized by cyclocondensation between mercaptoacetic acid and different phenylhydra­zones in 43–62 % yields. The synthesized compounds were characterized based on FTIR, 1H-NMR, 13C-NMR and HRMS data. The sulfonamides were evaluated for their in vitro antimicrobial activities against four bacterial strains (E. coli, P. aeruginosa, B. subtillis and S aureus), two filamentous fungal strains (A. niger and F. oxysporum) and two yeast strains (C. albicans and S. cerevisiae). Seven pyrazolines, 2ac and 2eh, exhibited significant inhibition of different microbial strains. Among them, compound 2b displayed good anti­fungal activity against A. niger (MIC value at 12.5 mg mL-1) over the reference drug.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
T.-D. Thach, T. T.-V. Le, H. T.-A. Nguyen, C.-H. Dang, V.-S. Dang, and T.-D. Nguyen, “Synthesis of sulfonamides bearing 1,3,5-triarylpyrazoline and 4-thiazolidinone moieties as novel antimicrobial agents”, J. Serb. Chem. Soc., vol. 85, no. 2, pp. 155–162, Mar. 2020.
Section
Organic Chemistry

References

N. V. Chandrasekharan, H. Dai, K. L. Roos, N. K. Evanson, J. Tomsik, T. S. Elton, D. L. Simmons, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 13926 (https://doi.org/10.1073/pnas.162468699)

J. Badgujar, D. More, J. Meshram, Mod. Org. Chem. Res. 2 (2017) 33 (https://doi.org/10.22606/mocr.2017.22001)

Y. Genc, R. Ozkanca, Y. Bekdemir, Ann. Clin. Microbiol. Antimicrob. 7 (2008) 17 (https://doi.org/10.1186/1476-0711-7-17)

J. R. Badgujar, D. H. More, J. S. Meshram, Indian J. Microbiol. 58 (2018) 93 (https://doi.org/10.1007/s12088-017-0689-6)

M. M. Ghorab, F. A. Ragab, M. M. Hamed, Eur. J. Med. Chem. 44 (2009) 4211 (https://doi.org/10.1016/j.ejmech.2009.05.017)

J. M. Thiede, S. L. Kordus, B. J. Turman, J. A. Buonomo, C. C. Aldrich, Y. Minato, A. D. Baughn, Sci. Rep. 6 (2016) 38083 (https://doi.org/10.1038/srep38083)

S. Petrović, A. Tačić, S. Savić, V. Nikolić, Lj. Nikolić, S. Savić, Saudi Pharm. J. 25 (2017) 1194 (https://doi.org/10.1016/j.jsps.2017.09.003)

E. Borowska, E. Felis, K. Miksch, J. Adv. Oxid. Technol. 18 (2015) 69 (https://doi.org/10.1515/jaots-2015-0109)

M. T. Madigan, J. M. Martinko, D. A. Stahl, D. P. Clark, Brock Biology of Microorganisms, Pearson Education, London, 2012, p.767

S. S. Korgaokar, P. H. Patil, M. J. Shah, H. H. Parekh, Indian J. Pharm. Sci. 58 (1996) 222

D. Nauduri, G. B. Reddy, Chem. Pharm. Bull. 46 (1998) 1254 (https://doi.org/10.1248/cpb.46.1254)

Z. Ozdemir, H. B. Kandilici, B. Gumusel, U. Calis, A. A. Bilgin, Eur. J. Med. Chem. 42 (2007) 373 (https://doi.org/10.1016/j.ejmech.2006.09.006)

K. R. A. Abdellatif, E. K. A. Abdelall, W. A. A. Fadaly, G. M. Kamel, Bioorg. Med. Chem. Lett. 26 (2016) 406 (https://doi.org/10.1016/j.bmcl.2015.11.105)

O. I. El-Sabbagh, M. M. Baraka, S. M. Ibrahim, C. Pannecouque, G. Andrei, R. Snoeck, J. Balzarini, A. A. Rashad, Eur. J. Med. Chem. 44 (2009) 3746 (https://doi.org/10.1016/j.ejmech.2009.03.038)

D. Zampieri, M. G. Mamolo, E. Laurini, G. Scialino, E. Banfi, L. Vio, Bioorg. Med. Chem. 16 (2008) 4516 (https://doi.org/10.1016/j.bmc.2008.02.055)

M. Shaharyar, A. A. Siddiqui, M. A. Ali, D. Sriram, P. Yogeeswari, Bioorg. Med. Chem. Lett. 16 (2006) 3947 (https://doi.org/10.1016/j.bmcl.2006.05.024)

M. S. Karthikeyan, B. S. Holla, N. S. Kumari, Eur. J. Med. Chem. 42 (2007) 30 (https://doi.org/10.1016/j.ejmech.2006.07.011)

B. F. Abdel-Wahab, H. A. Abdel-Aziz, E. M. Ahmed, Eur. J. Med. Chem. 44 (2009) 2632 (https://doi.org/10.1016/j.ejmech.2008.09.029)

A. Deep, P. Kumar, B. Narasimhan, K. Ramasamy, V. Mani, R. K. Mishra, A. B. A. Majeed, Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 15 (2015) 990 (https://doi.org/10.2174/1568026615666150317221849)

S. G. Modha, V. P. Mehta, D. Ermolatev, J. Balzarini, K. V. Hecke, L. V. Meervelt, E. V. Eycken, Mol. Divers. 14 (2010) 767 (https://doi.org/10.1007/s11030-009-9221-1)

A. Verma, S. K. Saraf, Eur. J. Med. Chem. 43 (2008) 897 (https://doi.org/10.1016/j.ejmech.2007.07.017)

S. Senkardes, S. G. G. Kucukguzel, Mini-Rev. Org. Chem. 13 (2016) 377 (https://doi.org/10.2174/1570193X13666160826154159)

T. K. D. Hoang, T. K. C. Huynh, T. D. Nguyen, Bioorg. Chem. 63 (2015) 45 (https://doi.org/10.1016/j.bioorg.2015.09.005)

T. D. Nguyen, V. S. Dang, V. H. Nguyen, T. M. T. Nguyen, C. H. Dang. Polycyclic Aromat. Compd. 38 (2018) 42 (https://doi.org/10.1080/10406638.2016.1143848)

T. K. D. Hoang, T. K. C. Huynh, T. H. T. Do, T. D. Nguyen, Chem. Pap. 72 (2018) 1399 (https://doi.org/10.1007/s11696-018-0402-1)

T. N. T. Nguyen, T. N. N. Huynh, V. T. Tran, C. H. Dang, T. K. D. Hoang, T. D. Nguyen, J. Essent. Oil Res. 30 (2018) 285 (https://doi.org/10.1080/10412905.2018.1435428).