Corrected accelerated service life test of electrodeposited NiSn alloys and Ni as cathodes for industrial alkaline water electrolysis

Borka M. Jović, Nevenka R. Elezović, Ljiljana Gajić-Krstajić

Abstract


The “corrected accelerated service life test for hydrogen evolution reaction” (CASLT-HER), designed for application of certain electrode mat­er­ials as cathodes in the cell for alkaline water electrolysis in 30 % KOH at 80 °C, was performed at electrodeposited NiSn alloy and Ni 40 mesh electrodes. The Ni 40 mesh was slightly etched, while the NiSn alloy coating was electro­deposited from the bath containing pyrophosphate, glycine, SnCl2 and NiCl2 onto Ni 40 mesh to the thickness of approximately 40 µm. It is shown that the NiSn cathode possess from maximum 0.77 V to minimum 0.30 V better over­potential than the Ni 40 mesh electrode during the 5 years of their exploitation at the conditions of industrial alkaline water electrolysis. It is also shown that both electrodes should be held at j = –0.3 A cm-2 for at least 5 h in order to est­ablish stable overpotential response. The limiting overpotential values for applying cyclic voltammetry (CVs, to mimic “polarity inversion”) should be determined in a separate experiment before the CASLT-HER and should be adjusted during the application of CVs.


Keywords


constant current density; cyclic voltammetry; hydrogen evolution

Full Text:

PDF (5,420 kB)

References


V. D. Jović, B. M. Jović, U. Č. Lačnjevac, N. V. Krstajić, P. Zabinski, N. R. Elezović, J. Electroanal. Chem. 819 (2018) 16 (https://dx.doi.org/10.1016/j.jelechem.2017.06.011)

A. L. Antozzi, C. vBargioni, L. Jacopetti, M. Musiani, L. Vazquez-Gomez, Electrochim. Acta 53 (2008) 7410 (https://dx.doi:10.1016/j.electacta.2007.12.025)

V. D. Jović, U. Lačnjevac, B. M. Jović, N. V. Krstajić, Electrochim. Acta 63 (2012) 124 (https://dx.doi.org/10.1016/j.electacta.2011.12.078)

V. D. Jović, U. Č. Lačnjevac, B. M. Jović, Lj. M. Gajić-Krstajić, N. V. Krstajić, J. Serb. Chem. Soc.78 (2013) 689 (https://dx.doi/10.2298/JSC120831112J)

B. M. Jović, U. Č. Lačnjevac, N. V. Krstajić, V. D. Jović, Int. J. Hydrogen Energy 39 (2014) 8947 (https://dx.doi.org/10.1016/j.ijhydene.2014.04.015)

M.B.F. Santos, P.E. Da Silva, R. Andrade Jr, J.A.F. Dias, Electrochim. Acta 37 (1992) 29 (https://dx.doi.org/10.1016/0013-4686(92)80007-9)

H. Yamashita, T. Yamamura, K. Yoshimoto, J. Electrochem. Soc. 140 (1993) 2238 (https://dx.doi:10.1149/1.2220802)

V. D. Jović, U. Lačnjevac, B. M. Jović, Lj. Karanović, N. V. Krstajić, Int. J. Hydrogen Energy 37 (2012) 17882 (https://dx.doi.org/10.1016/j.ijhydene.2012.09.110)

B. M. Jović, U. Č. Lačnjevac, N. V. Krstajić, V. D. Jović, Electrochim. Acta 114 (2013) 813 (https://dx.doi.org/10.1016/j.electacta.2013.06.024)

D. M. Soares, O. Teschke, I. Torriani, J. Electrochem. Soc.139 (1992) 98 (https://dx.doi/10.1149/1.2069207)

N. Krstajić, M. Popović, B. Grgur, M. Vojnović, D. Šepa, J. Electroanal. Chem. 512 (2001) 16 doi.org/10.1016/S0022-0728(01)00590-3

P.W.T. Lu, S. Srinivasan, J. Electrochem. Soc. 125 (1978) 1416 (https://dx.doi/10.1149/1.2131689)

S. Trasatti, in Electrochemical Hydrogen Technologies, H. Wendt, Ed., Elsevier, Amsterdam, 1990, p. 104

H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11 (1966) 1079 (https://dx.doi/10.1016/0013-4686(66)80045-2)

R. S. Schrebler-Guzman, J. R. Vilahe, A. J. Arvia, J. Electrochem. Soc. 125 (1978) 1578 (https://dx.doi/10.1149/1.2131247)

F. Hahn, B. Beden, M. J. Croissant, C. Lamy, Electrochim. Acta 31 (1986) 335 (https://dx.doi/10.1016/0013-4686(86)80087-1)

C. Valero-Vidal, I. Herraiz-Cardona, V. Perez-Herranz, A. Igual-Munoz, Appl. Catal., B 198 (2016)142 (https://dx.doi//10.1016/j.apcatb.2016.05.030).




DOI: https://doi.org/10.2298/JSC190515074J

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)