Effects of moisture and temperature on pesticide stability in corn flour

Yetong Liu, Xu Qin, Qiusheng Chen, Qiang Zhang, Ping Yin, Yongze Guo

Abstract


Corn flour has been stored at different moisture content (without and with 10 % water) and temperatures (-20, 4 and 25 °C). A modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was used to determine the degradation rate of five common pesticides (imidacloprid, carbendazim, triadimefon, acetochlor, and metolachlor) during the stored process using high-performance liquid chromatography with a diode array detector and gas chromatography with an electron capture detector. The results showed that five pesticides experienced almost no degradation at -20 °C in corn flour whether with or without water, and the half-life was 69.3-693.2 days. The degradation rate ranged from 1.7 to 7.8 % after ten days of application. Under 25 °C and 10 % moisture content, the half-life was sharply reduced to 5.8-14.4 days. Under this condition, the degradation rate ranged from 40.6 to 68.4 % after ten days of application, and the sequence from high to low of the five pesticides’ degradation rates was as follows: carbendazim, imidacloprid, acetochlor, metolachlor, and triadimefon. Therefore, low temperature and drying were beneficial to the storage of corn flour, but unfavorable to the degradation of pesticides in corn flour.

Keywords


pesticides residue; moisture content; temperature; corn flour

Full Text:

PDF (1,469 kB)

References


FAO’s Office for Corporate Communication, The State of Food and Agriculture, Food and Agriculture Organization of the United Nations, Roma, 2016 (http://www.fao.org/3/a-i6030e.pdf)

N. Colbach, A. Fernier, V. Le Corre, A. Messéan, H. Darmency, Environ. Sci. Pollut. R. 24 (2017) 11582 (https://doi.org/10.1007/s11356-017-8591-7)

S. T. DeLiberto, S. J. Werner, Pest Manag. Sci. 72 (2016) 1813 (https://doi.org/10.1002/ps.4330)

Q. Yang, P. Balint-Kurti, M. L. Xu, Mol. Plant 10 (2017) 402 (https://doi.org/10.1016/j.molp.2017.02.004)

S. Sitaramaraju, N. V. V. S. D. Prasad, V. Chenga reddy, E. Narayana, J. Chem. Pharm. Sci. 3 (2014) 75 (https://www.jchps.com/specialissues/Special%20issue3/15%20jchps-%20si3%20S.%20Sitaramaraju%2075-79.pdf)

M. Chen, P. Xu, G. M. Zeng, C. P. Yang, D. L. Huang, J. C. Zhang, Biotechnol. Adv. 33 (2015) 745 (https://doi.org/10.1016/j.biotechadv.2015.05.003)

S. Andersson, S. I. Nilsson, Soil Biol. Biochem. 33 (2001) 1181 (https://doi.org/10.1016/S0038-0717(01)00022-0)

B. Antizar-Ladislao, K. Spanova, A. J. Beck, N. J. Russell, Int. Biodeter. Biodegr. 61 (2008) 357 (https://doi.org/10.1016/j.ibiod.2007.10.002)

S. Hemmamda, M. Calmon, J. P. Calmon, Pest Manag. Sci. 40 (1994) 71 (https://doi.org/10.1002/ps.2780400112)

J. Patsias, E. Papadopoulou-Mourkidou, J. Chromatogr. A 904 (2000) 171 (https://doi.org/10.1016/S0021-9673(00)00927-4)

I. A. K. Afridi, Z. Parveen, S. Z. Masud, J. Stored Prod. Res. 37 (2001) 199 (https://doi.org/10.1016/S0022-474X(00)00020-5)

M. F. Cengiz, M. Certel, H. Göcmen, Food Chem. 98 (2006) 127 (https://doi.org/10.1016/j.foodchem.2005.05.064)

J. Deplagne, J. Vial, V. Pichon, B. Lalere, G. Hervouet, M. C. Hennion, J. Chromatogr. A 1 (2006) 31 (https://doi.org/10.1016/j.chroma.2006.04.085)

H. Kobayashi, M. Nishida, O. Matano, S. Goto, J. Agr. Food Chem. 40 (1992) 76 (https://doi.org/10.1021/jf00013a015)

K. Maštovská, S. J. Lehotay, J. Chromatogr. A 1040 (2004) 259 (https://doi.org/10.1016/S0021-9673(04)00591-6)

M. Puchalski, G. Horvath, M. Loughran, W. Koskinen, J. Environ. Qual. 28 (1999) 726 (https://doi.org/10.2134/jeq1999.00472425002800020042x)

U. Uygun, R. Özkara, A. Özbey, H. Koksel, Food Chem. 100 (2007) 1165 (https://doi.org/10.1016/j.foodchem.2005.10.063)

M. Anastassiades, S. J. Lehotay, D. Stajnbaher, F. J. Schenck, J. AOAC Int. 86 (2003) 412 (https://naldc.nal.usda.gov/download/555/PDF)

F. J. Schenck, J. E. Hobbs, B. Environ. Contam. Tox. 73 (2004) 24 (https://doi.org/10.1007/s00128-004-0388-y)

P. Payá, M. Anastassiades, D. Mack, I. Sigalova, B. Tasdelen, J. Oliva, A. Barba, Anal. Bioanal. Chem. 389 (2007) 1697 (https://doi.org/10.1007/s00216-007-1610-7)

I. G. Cara, F. D. Lipșa, M. S. Cara, L. Burtan, D. Țopa, G, Jităreanu, AgroLife Sci. J. 6 (2017) 48 (http://agrolifejournal.usamv.ro/pdf/vol.VI_1/Art6.pdf)

P. Y. Cao, X. Y. Wang, F. M. Liu, E. C. Zhao, L. J. Han, Bull. Environ. Contam. Toxicol. 80 (2008) 391 (https://doi.org/10.1007/s00128-008-9359-z)

R. Akoijam, B. Singh, Bull. Environ. Contam. Toxicol. 92 (2014) 609 (https://doi.org/10.1007/s00128-013-1190-5)

J. E. Garcia, J. Kirchhoff, F. Grossmann, J. Environ. Sci. Heal. B 26 (1991) 427 (https://doi.org/10.1080/03601239109372746)

J. L. Wu, H. D. Wei, X. F. Sui, J. Lin, T. Y. Wang, G. Q. Fen, J. Xue, Bull. Environ. Contam. Toxicol. 84 (2010) 469 (https://doi.org/10.1007/s00128-010-9970-7)

W. Li, Y. Ma, L. Li, D. M. Qin, Y. J. Wu, Chemosphere 82 (2011) 829 (https://doi.org/10.1016/j.chemosphere.2010.11.027)

F. A. D. Sousa, A. I. G. Costa, R. F. Teófilo, A. A. Neves, M. E. L. I. D. Queiroz, G. P. D. Pinho, Food Chem. 135 (2012) 179 (https://doi.org/10.1016/j.foodchem.2012.04.063)

OECD, Oecd Guidelines for the Testing of Chemicals 1 (2007) 1 (https://doi.org/10.1787/9789264061927-en)

P. E. Athanasopoulos, C. Pappas, N. V. Kyriakidis, A. Thanos, Food Chem. 91 (2005) 235 (https://doi.org/10.1016/j.food chem.2003.10.018)

H. Sabik, R. Jeannot, J. Chromatogr. A 879 (2000) 73 (https://doi.org/10.1016/S0021-9673(00)00169-2)

K. Aboulfadl, C. De Potter, M. Prévost, S. Sauvé, Chem. Cent. 4 (2010) 1 (https://doi.org/10.1186/1752-153X-4-10)

P. E. Athanasopoulos, N. B. Kyriakidis, I. Georgitsanakou, J. Agr. Food Chem. 48 (2000) 4896 (https://doi.org/10.1021/jf991354g).




DOI: https://doi.org/10.2298/JSC190622100L

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)