Synthesis and characterization of copper (II) octaazamacrocyclic complexes with glycine derivatives. In vitro antiproliferative and antimicrobial evaluation of Cu(II) and Co(II) analogous

Branka Dražić, Mirjana Antonijevič Nikolić, Željko Žižak, Slađana Tanasković

Abstract


Two new complexes with general formula [Cu2(L)tpmc](ClO4)3·nH2O (tpmc = N,N¢,N¢¢,N¢¢¢-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetra­deca­ne, L = N-methylglycine, n=3; L=N,N-dimethylglycine, n =2) were isolated and their composition, some physical and chemical properties and geometries were proposed by elemental analysis (C, H, N), conductometric and magnetic mea­surements and spectroscopic data (UV-Vis,FTIR). It is evident that complexes are binuclear and proposed an exo coordination mode of macrocyclic ligand in the boat conformation. The co-ligands are coordinated as a bridge using both oxygen atoms of the OCO group. The cytotoxic activity of Cu(II) complexes as well as their Co(II) analogs, the starting ligands and the free salts were tested against human cervix adenocarcinoma cell line (HeLa), human chronic myelogenous leukemia cells (K562), human breast cancer cell line (MDA-MB-453), and a non-cancerous cell line, human embryonic lung fibroblast (MRC-5). The IC50 values for Cu(II) complexes were from 21.60 ± 0.04 to 66.1±0.8, and for the Co(II) analogs were within the range from 8.8 ± 0.74 to 15.40 ± 1.52. All four complexes were tested for antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and the yeast Candida albicans.


Keywords


Cu(II) and Co(II) complexes; octaazamacrocycle; antiproliferative activity; antimicrobial activity.

Full Text:

PDF (1,275 kB)

References


G. B. Bagihalli, P. G. Avaji, S. A. Patil, P. S. Badami, Eur. J. Med. Chem. 43 (2008) 2639 (https://dx.doi.org/10.1016/j.ejmech.2008.02.013)

Y. Wan, S. He, W. Li, Z. Tang, Anti Cancer Agents Med. Chem. 18(9) (2018) 1228 (https://dx.doi.org/10.2174/1871520618666180510113822)

Z. H. Chohan, M. Arif, M. A. Akhtar, C. T. Supuran, Bioinorg. Chem. Appl. 2006, ID 83131, 1 (https://dx.doi.org/10.1155/BCA/2006/83131)

H. Fałtynowicz, M. Daszkiewicz, R. Wysokinski, A. Adach, M. Cieslak-Golonka, Struct. Chem. 26 (2015) 1555 (https://dx.doi.org/10.1007/s11224-015-0631-7)

P. A. Vigato, S. Tamburini, Coord. Chem. Rev. 248 (2004) 1717 (https://dx.doi.org/10.1016/j.cct.2003.09.003)

W. Sibert, A. H.Cory, J. G.Cory, Chem. Commun. 2 (2002) 154 (https://dx.doi.org/10.1039/b107899m)

S. J. Paisey, P. J. Sadler, Chem. Commun. 3 (2004) 306 (https://dx.doi.org/10.1039/B312752B)

Qi-Y. Yang, Q. Q. Cao, Q. P. Qin, C. X. Deng, H. Liang, Z. F. Chen, Int. J. Mol. Sci. 19 (2018) 1874 (https://dx.doi.org/10.3390/ijms19071874)

Z. Lakovidou, A. Papageorgiou, M. A. Demertzis, E. Mioglou, D. Mourelatos, A. Kotsis, P. N. Yadav, D. Kovala-Demertzi, Anti-Cancer Drugs 12 (2001) 65 (https://www.ncbi.nlm.nih.gov/pubmed/11272288)

A. Fetoh, K. A. Asla, A. A. El-Sherif, H. El-Didamony, G. M. Abu El-Reash, J. Mol. Struct. 1178 (2019) 524 (https://doi.org/10.1016/j.molstruc.2018.10.066)

P. M. Reddy, R. Rohini, E. Ravi Krishna, A. Hu, V. Ravinder, Int. J. Mol. Sci. 13 (2012) 4982 (https://dx.doi.org/10.3390/ijms13044982)

R. S. Prabhat, R. Singh, S. Pawar, A. Chauhan, J. Am. Sci. 6(9) (2010) 559 (http://ijsetr.org/wp-content/uploads/2016/10/IJSETR-VOL-5-ISSUE-10-2964-2967.pdf)

C. S. Dilip, V. Sivakumar, J. J. Prince, Indian J. Chem. Tech. 19 (2012) 351 (http://nopr.niscair.res.in/handle/123456789/14682)

M. Antonijević-Nikolić, J. Antić-Stanković, S. B. Tanasković, M. J. Korabik, G. Gojgić- Cvijović, G. Vučković, J. Mol. Struct. 1054–1055 (2013) 297 (https://doi.org/10.1016/j.molstruc.2013.10.006)

G. Vučković, S. B. Tanasković, M. Antonijević-Nikolić, V. Živković-Radovanović, G. Gojgić-Cvijović, J. Serb. Chem. Soc.74 (2009) 629 (https://dx.doi.org/10.2298/JSC0906629V)

S. Chandrasekhar,W. L. Waltz, L. Prasad, J. W. Quail, Can. J. Chem. 75 (1997) 1363 (https://doi.org/10.1139/v97-164)

E. Asato, H. Toftlund, S. Kida, M. Mikuriya, K. S. Murray, Inorg. Chim. Acta. 165 (1989) 207 (http://dx.doi.org/10.1016/S0020-1693(00)83241-7)

E. Konig, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer-Verlag, Berlin, 1966, p.345

T. Mosmann,. J. Immunol. Method 65 (1983) 55 (http://dx.doi.org/10.1016/0022-1759(83)90303-4)

M. Ohno, T. Abe, J. Immunol. Methods 145 (1991) 199 (https://www.ncbi.nlm.nih.gov/pubmed/1765652)

W. J. Gear, Coord. Chem. Rev.7 (1971) 81

(https://dx.doi.org/10.1016/S0010-8545(00)80009-0)

F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann. Advanced Inorganic Chemistry, 6th Edn., Wiley, New York, 1999, p. 854

G. Vučković, M. Antonijević, D. Poleti, J. Serb. Chem. Soc. 67(2002) 677

Z. M. Miodragović, G. Vučković, V. M. Leovac, J. Serb. Chem. Soc. 66 (2001) 597 (https://doi.org/10.2298/JSC0109597M)

G. Vučković, M. Antonijević-Nikolić, S. B. Tanasković, V. Živković-Radovanović, J. Serb. Chem. Soc. 76 (2011) 719 (https://doi.org/10.2298/JSC101201062V)

A. B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier, Amsterdam, 1984, p. 554

K. Nakamoto, Applications in Coordination Chemistry, in Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5 th ed., Wiley, New York, 1997, p. 23, 59, 83, 271 (ISBN:978-0-471-74493-1)

G. Deacon, R. J. Philips, Coord. Chem. Rev. 33(1980) 227 (https://doi.org/10.1016/S0010-8545(00)80455-5)

A. Stănilă, C. Braicu, S. Stănilă, R.M. Pop, Not. Bot. Horti. Agrobo. 39(2) (2011) 124 (https://doi.org/10.15835/nbha3926847)

Jawetz, Melnick & Adelberg's, Medical Microbiology, 27th Ed. McGraw-Hill Education, New York, 2016

Y. Arafat, S. Ali, S. Shahzadi, M. Shahid, Bioinorg. Chem. Applic. 2013, Article ID 351262 (http://dx.doi.org/10.1155/2013/351262)

J. B. Dalmarco, E. M. Dalmarco, J. Koelzer, M. G. Pizzolatti, T. S. Fröde, Inter J Green Pharmacy 4(2) (2010) 108 (http://dx.doi.org/10.22377/ijgp.v4i2.130)




DOI: https://doi.org/10.2298/JSC190710088D

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)