Synthesis, crystal structure and biological activity of a copper(II) complex with a 4-nitro-3-pyrazolecarboxylic ligand
Main Article Content
Abstract
The reaction of 4-nitro-3-pyrazolecarboxylic acid and Cu(OAc)2×H2O in ethanol resulted in a new coordination compound [Cu2(4-nitro-3-pzc)2(H2O)6]2H2O (4nitro-3pzc = 4-nitro-3-pyrazolecarboxylate). The compound was investigated by means of single-crystal X-ray diffraction and infrared spectroscopy. The biological activity of the complex was also tested. In the crystal structure of [Cu2(4nitro-3-pzc)2(H2O)6]2H2O, the Cu(II) ion is in a distorted [4+2] octahedral coordination due to the Jan–Teller effect. A survey of the Cambridge Structural Database showed that the octahedral coordination geometry is generally rare for pyrazole-bridged Cu(II) complexes. In the case of Cu(II) complexes with the 3-pyrazolecarboxylato ligands, no complexes with a similar octahedral coordination geometry have been reported. Biological research based on determination of the inhibition effect of the commercial fungicide Cabrio top and the newly synthesized complex on Ph. viticola were performed using the phytosanitary method.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. Klingele, S. Dechert, E. F. Meyer, Coord. Chem. Rev. 253 (2009) 2698 (https://doi.org/10.1016/j.ccr.2009.03.026)
I. Castro, W. P. Barros, M. L. Calatayud, F. Lloret, N. Marino, G. De Munno, H. O. Stumpf, R. Ruiz-García, M. Julve, Coord. Chem. Rev. 315 (2016) 135 (https://doi.org/10.1016/j.ccr.2016.02.004)
M. Faraz Khan, M. Mumtaz Alam, G. Verma, W. Akhtar, M. Akhter, M. Shaquiquzzaman, Eur. J. Med. Chem. 120 (2016) 170 (https://doi.org/10.1016/j.ejmech.2016.04.077)
B. Fernández, I. Fernández, J. Cepeda, M. Medina-ODonnell, E. E. Rufino-Palomares, A. Raya-Barón, S. Gómez-Ruiz, A. Pérez-Jiménez, J. A. Lupiáñez, F. J. Reyes-Zurita, A. Rodríguez-Diéguez, Cryst. Growth Des. 18 (2018) 969 (https://doi.org/10.1021/acs.cgd.7b01443)
M. Fitta, R. Pełka, W. Sas, D. Pinkowicz, B. Sieklucka, RSC Adv. 8 (2018) 14640 (https://doi.org/10.1039/c8ra01609g)
P. Yin, J. Zhang, L. A. Mitchell, D. A. Parrish, J. M. Shreeve, Angew. Chem. Int. Ed. Engl. 55 (2016) 12895 (https://doi.org/10.1002/anie.201606894)
X. Zhang, N. Xing, F. Bai, L. Wan, H. Shan, Y. Hou, Y. Xing, Z. Shi, CrystEngComm 15 (2013) 9135 (https://doi.org/10.1039/c3ce41213j)
H. Furukawa, F. Gándara. Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 136 (2014) 4369 (https://doi.org/10.1021/ja500330a)
C. Pettinari, A. Tabacaru, S. Galli, Coord. Chem. Rev. 307 (2016) 1 (https://doi.org/10.1016/j.ccr.2015.08.005)
Ž. K. Jaćimović, S. B. Novaković, G. A. Bogdanović, G. Giester, M. Kosović, E. Libowitzky, Acta Crystallogr., C 75 (2019) 255 (https://doi.org/10.1107/S2053229619001244)
Ž. Jaćimović, M. Kosović, V. Kastratović, B. Barta Holló, K. Mészáros Szécsényi, I. Miklós Szilágyi, N. Latinović, Lj. Vojinović-Ješić, M. Rodić, J. Therm. Anal. Cal. 133 (2018) 813 (https://doi.org/10.1007/s10973-018-7229-4)
Ž. K. Jaćimović, M. Kosović, S. Novaković, G. Giester, A. Radović, J. Serb. Chem. Soc. 80 (2015) 867. (https://doi.org/10.2298/JSC140722009J)
N. J. Harrick, Internal Reflection Spectroscopy, Interscience Publishers, Wiley, New York, 1967
R. W. W. Hooft, COLLECT Data collection software, Nonius BV, Delft, 2007
Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr., A 59 (2003) 228 (https://doi.org/10.1107/S0108767303005488)
G. M. Sheldrick, Acta Crystallogr., A 64 (2008) 112 (https://doi.org/10.1107/S0108767307043930)
M. J. Nardelli, Appl. Crystallogr. 32 (1999) 563 (https://doi.org/10.1107/S0021889899002666)
J. Stanković, N. Lakić, I. Ljubanović-Ralević, Exercises in experimental statistics, Faculty of Agriculture, Belgrade, 1990, pp. 242–243 (in Serbian)
E. Libowitzky, Mh. Chemie 130 (1999) 1047 (https://doi.org/10.1007/BF03354882)
S. T. King, J. Phys. Chem. 74 (1970) 2133 (https://doi.org/10.1021/j100909a015)
V. Krishnakumar, N. Jayamani, R. Mathammal, Spectrochim. Acta, A 79 (2011) 1959 (https://doi.org/10.1016/j.saa.2011.05.100)
J.-J. Max, C. J. Chapados, J. Phys. Chem., A 108 (2004) 3324 (https://doi.org/10.1021/jp036401t)
B. Pergolese, M. Muniz-Miranda, A. Bigotto, Vibr. Spectr. 48 (2008) 107 (https://doi.org/10.1016/j.vibspec.2008.02.004)
I. R. Lewis, N. W. Daniel Jr., P. R. Griffith, Appl. Spectr. 51 (1997) 1854 (https://doi.org/10.1366/0003702971939686)
C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (http://dx.doi.org/10.1107/S2052520616003954)
S. Reinoso, B. Artetxe, O. Castillo, A. Luque, J. M. Gutierrez-Zorrilla, Acta Crystallogr., E 71 (2015) m232 (https://doi.org/10.1107/S2056989015021593)
X.-Y. Jiang, N.-X. Rong, R. Qian, T.-T. Qiu, Q.-X. Yao, X.-Q. Huang, Jiegou Huaxue 37 (2018) 329 (https://doi.org/10.14102/j.cnki.0254-5861.2011-1731)
H. Chen, C.-B. Ma, C.-N. Chen, Jiegou Huaxue 33 (2014) 1807 (https://doi.org/10.14102/j.cnki.0254-5861.2011-0359)
S.-Y. Zhang, Y. Li, W. Li, Inorg. Chim. Acta 362 (2009) 2247 (https://doi.org/10.1016/j.ica.2008.10.010)
C. Feng, Y.-H. Ma, D. Zhang, X.-J. Li, H. Zhao, Dalton Trans. 45 (2016) 5081 (https://doi.org/10.1039/C5DT04740D)
C. S. Hawes, P. E. Kruger, RSC Adv. 4 (2014) 15770 (https://doi.org/10.1039/C4RA02147A)
Ž. Jaćimović, M. Kosović, J. Latinović, M. Bigović, V. Kastratović, in Proceedings of 18th European Meeting on Environmental Chemistry, EMEC 18, Porto, Portugal, Book of Abstracts, 2017, p. 182
Ž. Jaćimović, N. Latinović, J. Latinović, M. Kosović, V. Kastratović, M. Vlahović, V. Grudić, in Proceedings of 25th Congress of Chemists and Technologists of Macedonia, Ohrid, Macedonia, Book of Abstracts, 2018, p. 118.