Oxidized humic acids from the soil of heat power plant - Short Communication

Srđan Miletić, Jelena Avdalović, Jelena Milić, Mila Ilić, Aleksandra Žerađanin, Kristina Joksimović, Snežana Spasić

Abstract


Humic acids isolated from the soil of a heat power plant (HA-E) con­ta­minated with oil were analyzed by Fourier transform infrared spectroscopy (FTIR). In comparison with a humic acids standard (HA-S), a lack of an int­ense broad band of the stretching vibrations of hydrogen-bonded hydroxyl groups (3600–3200 cm-1) is evident. The HA-E spectra have a peak at 1649 cm-1, which could belong to carbonyl groups. HA-E are heavily oxidized and among the isolated microorganisms, Achromobacter denitrificans may be res­ponsible for such intensive oxidation of HA-E. To the phylogenetically diverse nitrate-reducing microorganisms that have the capacity to utilize reduced HA as electron donors in soils, A. denitrificans can be added.

Keywords


humic acid; microorganism; FTIR; contaminated soil

Full Text:

PDF (967 kB)

References


D. R. Lovley, J. L. Fraga, J. D. Coates, E. L. Blunt-Harris, Environ. Microbiol. 1 (1999) 89 (https://doi.org/10.1046/j.1462-2920.1999.00009.x)

J. D. Coates, K. A. Cole, R. Chakraborty, S. M. O’Connor, L. A. Achenbach, Appl. Environ. Microbiol. 68 (2002) 2445 (https://doi.org/10.1128/aem.68.5.2445-2452.2002)

J. I. Van Trump, Y. Sun, J. D. Coates, Adv. Appl. Microbiol. 60 (2006) 55 (https://dx.doi.org/10.1016/S0065-2164(06)60003-8)

F. J. Stevenson, Humus chemistry: genesis, composition, reactions, Wiley, New York, 1994 (ISBN: 978-0-471-59474-1)

J. N. Boyer, P. M. Groffman, Soil Biol. Biochem. 28 (1996) 783 (https://dx.doi.org/10.1016/0038-0717(96)00015-6)

J. S. Gaffney, N. A. Marley, S. B. Clark, in Humic and fulvic acids – isolation, structure, and environmental role, Vol. 651, J. S. Gaffney, N. A. Marley, S. B. Clark, Eds., American Chemical Society, Washington, DC, 1991, p. 1 (ISBN 084123468X, 9780841234680)

H. R. Schulten, B. Plage, M. Schnitzer, Naturwissenschaften 78 (1991) 311 (https://dx.doi.org/10.1007/BF01221416)

C. Löser, H. Seidel, A. Zehnsdorf, U. Stottmeister, Appl. Microbiol. Biotechnol. 49 (1998) 631 (https://doi.org/10.1007/s002530051)

I. D. Bossert, L. M. Shor, D. S. Kosson, in Manual of Environmental Microbiology, 2nd ed., C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, Eds., ASM Press, Washington, DC, 2002, p. 934 (https://books.google.rs/books/about/Manual_of_environmental_microbiology.html?id=PQIpAQAAMAAJ&redir_esc=y)

S. Miletić, S. D. Spasić, J. Avdalović, V. Beškoski, M. Ilić, G. Gojgić-Cvijović, M. M. Vrvić, Clean-Air Water Soil 42 (2014) 1280 (https://doi.org/10.1002/clen.201300034)

A. C. Reis, M. Cvancarova, Y. Liu, M. Lenz, T. Hettich, B. A. Kolvenbach, P. F. Corvini, O. C. Nunes, Appl. Microbiol. Biotechnol. 102 (2018) 10299 (https://dx.doi.org/10.1007/s00253-018-9411-9)

S. Benjamin, N. Kamimura, K. Takahashi, E. Masaia, Ecotoxicol. Environ. Saf. 134 (2016) 172 (https://dx.doi.org/10.1016/j.ecoenv.2016.08.028)

S. Pradeep, M. K. Sarath Josh, P. Binod, R. Sudha Devi, S. Balachandran, R. C. Anderson, S. Benjamin, Ecotoxicol. Environ. Saf. 112 (2015) 114 (https://dx.doi.org/10.1016/j.ecoenv.2014.10.035)

J. I. Van Trump, K. C. Wrighton, J. Cameron Thrash, K. A. Weber, G. L. Andersen, J. D. Coates, mBio, 2 (2011) e00044 (https://dx.doi.org/10.1128/mBio.00044-11).




DOI: https://doi.org/10.2298/JSC190726099M

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)