Relationship between the properties of an interlayer formed by in situ Ti anodization and anaphoretically deposited hydroxyapatite

Authors

  • Marijana R. Pantović Pavlović Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Njegoševa 12, 11000 Belgrade
  • Miroslav M. Pavlović Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Njegoševa 12, 11000 Belgrade
  • Sanja Eraković Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Njegoševa 12, 11000 Belgrade
  • Tanja Barudžija Vinča Institute of Nuclear Sciences, University of Belgrade, 12-14 Mike Petrovića Street, Belgrade, Serbia
  • Jasmina S. Stevanović Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Njegoševa 12, 11000 Belgrade
  • Nenad Ignjatović Institute of Technical Science of the Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade, Serbia
  • Vladimir V. Panić Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Njegoševa 12, 11000 Belgrade

DOI:

https://doi.org/10.2298/JSC190730105P

Keywords:

titanium anodization, roughness, in situ anaphoretic deposition, hyd-roxyapatite coating, adhesion, titanium oxide.

Abstract

The optimization of the anodization process of Ti substrate for in situ synthesis of hydroxyapatite/titanium oxide composite coatings on titanium substrate was accomplished. The anodization was performed under 30, 60 and 90 V cell voltage, and the morphology of treated surface, as well as linear and surface roughness, were analysed by field emission-scanning electron micro­scopy, atomic force microscopy and roughness tester. It was shown by linear and surface roughness analyses that titanium anodized under 60 V has the high­est roughness, whereas at 90 V the flattening of the surface occurs. As the highest surface roughness results emerged at 60 V, the novel process of com­po­site anHAp/TiO2 coating synthesis, which comprises simultaneous processes of TiO2 formation and HAp deposition, as well as HAp impregnation within TiO2 surface layer, was performed at this voltage. Ti substrate surface was completely covered by composite coating, with no visible cracks. The adhesion quantified according to ASTM D3359-02 standard is considerably improved with respect to the coatings obtained by cathaphoretic processes, with no need of subsequent sintering.

References

S. D. Kahar, A. Macwan, R. Oza, V. Oza, S. Shah, J. Eng. Res. Appl. 3 (2013) 441.

Z. M. Yan, T. W. Guo, H. B. Pan, J. J. Yu, Mater. Trans. 43 (2005) 3142 (https://doi.org/10.2320/matertrans.43.3142)

L. Wu, J. Liu, M. Yu, S. Li, H. Liang, M. Zhu, Int. J. Electrochem. Sci. 9 (2014) 5012.

M. R. Pantović Pavlović, S. G. Eraković, M. M. Pavlović, J. S. Stevanović, V. V. Panić, N. L. Ignjatović, Surf. Coatings Technol. 358 (2019) 688 (https://doi.org/10.1016/j.surfcoat.2018.12.003)

M. J. Jackson, W. Ahmed, in Surface Engineered Surgery Tools and Medical Devices, M. J. Jackson, W. Ahmed, Eds., Springer-Verlag, Berlin, 2007, pp. 21–47

C. Larsson, P. Thomsen, B.-O. Aronsson, M. Rodahl, J. Lausmaa, B. Kasemo, L. E. Ericson, Biomaterials 17 (1996) 605 (https://doi.org/10.1016/0142-9612(96)88711-4)

H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, J. Mater. Sci. Mater. Med. 8 (1997) 341 (https://doi.org/10.1023/A:1018524731409)

T. Kokubo, H. M. Kim, M. Kawashita, T. Nakamura, J. Mater. Sci. Mater. Med. 15 (2004) 99 (https://doi.org/10.1023/B:JMSM.0000011809.36275.0c)

K. Bordji, J. Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K. T. Rie, T. Stucky, M. Hage-

-Ali, Biomaterials 17 (1996) 929 (https://doi.org/10.1016/0142-9612(96)83289-3)

C. Sittig, M. Textor, N. D. Spencer, M. Wieland, P. H. Vallotton, J. Mater. Sci. Mater. Med. 10 (1999) 35 (https://doi.org/10.1023/A:1008840026907)

S. Stojadinović, R. Vasilić, M. Petković, B. Kasalica, I. Belča, A. Žekić, L. Zeković, Appl. Surf. Sci. 265 (2013) 226 (https://doi.org/10.1016/j.apsusc.2012.10.183)

N. Ohtsu, H. Kanno, S. Komiya, Y. Mizukoshi, N. Masahashi, Appl. Surf. Sci. 270 (2013) 513 (https://doi.org/10.1016/j.apsusc.2013.01.071)

C. Bayram, M. Demirbilek, E. Yalçin, M. Bozkurt, M. Doǧan, E. B. Denkbaş, Appl. Surf. Sci. 288 (2014) 143 (https://doi.org/10.1016/j.apsusc.2013.09.168)

Y. J. Park, K. H. Shin, H. J. Song, Appl. Surf. Sci. 253 (2007) 6013 (https://doi.org/10.1016/j.apsusc.2006.12.112)

L. Xie, X. Liao, H. Xu, G. Yin, Z. Huang, Y. Yao, X. Chen, J. Gu, Mater. Lett. 72 (2012) 141 (https://doi.org/10.1016/j.matlet.2011.12.094)

D. Capek, M. P. Gigandet, M. Masmoudi, M. Wery, O. Banakh, Surf. Coatings Technol. 202 (2008) 1379 (https://doi.org/10.1016/j.surfcoat.2007.06.027)

N. Ohtsu, D. Ishikawa, S. Komiya, K. Sakamoto, Thin Solid Films 556 (2014) 247 (https://doi.org/10.1016/j.tsf.2014.01.083)

S. Komiya, K. Sakamoto, N. Ohtsu, Appl. Surf. Sci. 296 (2014) 163 (https://doi.org/10.1016/j.apsusc.2014.01.066)

X. Zhang, Y. Zhang, L. Chang, Z. Jiang, Z. Yao, X. Liu, Mater. Chem. Phys. 132 (2012) 909 (https://doi.org/10.1016/j.matchemphys.2011.12.032)

Y. Parcharoen, P. Kajitvichyanukul, S. Sirivisoot, P. Termsuksawad, Appl. Surf. Sci. 311 (2014) 54 (https://doi.org/10.1016/j.apsusc.2014.04.207)

D. F. Williams, J. Mater. Sci. 22 (1987) 3421 (https://doi.org/10.1007/bf01161439)

C. Han, Q. Wang, B. Song, W. Li, Q. Wei, S. Wen, J. Liu, Y. Shi, J. Mech. Behav. Biomed. Mater. 71 (2017) 85 (http://dx.doi.org/10.1016/j.jmbbm.2017.02.021)

K. Niespodziana, K. Jurczyk, J. Jakubowicz, M. Jurczyk, Mater. Chem. Phys. 123 (2010) 160 (http://dx.doi.org/10.1016/j.matchemphys.2010.03.076)

H. B. Wen, J. R. de Wijn, F. Z. Cui, K. de Groot, J. Biomed. Mater. Res. 41 (1998) 227 (https://doi.org/10.1002/(SICI)1097-4636(199808)41:2<227::AID-JBM7>3.0.CO;2-K)

S. A. Ulasevich, A. I. Kulak, S. K. Poznyak, S. A. Karpushenkov, A. D. Lisenkov, E. V Skorb, RSC Adv. 6 (2016) 62540 (https://doi.org/10.1039/C6RA10560B)

H. Wang, N. Eliaz, Z. Xiang, H.-P. Hsu, M. Spector, L. W. Hobbs, Biomaterials 27 (2006) 4192 (https://doi.org/10.1016/j.biomaterials.2006.03.034)

M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Prog. Mater. Sci. 54 (2009) 397 (https://doi.org/10.1016/j.pmatsci.2008.06.004)

J. Zhao, X. Wang, R. Chen, L. Li, Solid State Commun. 134 (2005) 705 (https://doi.org/10.1016/j.ssc.2005.02.028)

S. Eraković, A. Janković, D. Veljović, E. Palcevskis, M. Mitrić, T. Stevanović, D. Janaćković, V. Mišković-Stanković, J. Phys. Chem., B 117 (2013) 1633 (https://doi.org/10.1021/jp305252a)

Z. M. Yan, T. W. Guo, H. B. Pan, J. J. Yu, Mater. Trans. 43 (2002) 3142 (https://doi.org/10.2320/matertrans.43.3142)

K. I. Popov, P. M. Živković, N. D. Nikolić, J. Serb. Chem. Soc. 76 (2011) 805 (https://doi.org/10.2298/JSC100312079P)

Published

2019-12-03

How to Cite

[1]
M. R. Pantović Pavlović, “Relationship between the properties of an interlayer formed by in situ Ti anodization and anaphoretically deposited hydroxyapatite”, J. Serb. Chem. Soc., vol. 84, no. 11, pp. 1305-1318, Dec. 2019.

Issue

Section

In Memoriam Issue Devoted to Prof. Konstantin Popov

Most read articles by the same author(s)