Determination of tramadol in pharmaceutical forms and urine samples using a boron-doped diamond electrode

Main Article Content

Ertuğrul Keskin
https://orcid.org/0000-0001-5216-3520
Shabnam Allahverdiyeva
Esma Şeyho
Yavuz Yardım

Abstract

The present work describes the electroanalytical investigation and a novel voltammetric method for the cheap, fast and simple quantification of tramadol (TRH) using a boron-doped diamond electrode. TRH dis­played one well-defined, irreversible and adsorption-controlled oxidation peak at about 1.58 V (vs. Ag/AgCl) in Britton–Robinson buffer (BR, 0.1 mol L-1, pH 3.0) using the cyclic voltammetry technique. The voltammetric res­ponses of the oxidation peaks are dependent on pH and their sensitivity was significantly enhanced in the presence of surfactant media (sodium dodecyl sulphate, SDS). Under the optimized experiment conditions, employing the square-wave strip­ping mode, it was found that there was an excellent correlation between oxid­ation peak current and the TRH concentration in the range 0.25 to 50.0 μg mL-1 (8.34×10-7–1.67×10-4 mol L-1), with a detection limit of 0.072 μg mL-1 (2.40×10-7 mol L-1) in 0.1 mol L-1 BR buffer (pH 3.0) solution comprising 8×10-4 mol L-1 SDS at 1.52 V (after 30 s accumulation at open-circuit condit­ions). The developed approach could be used for the quantification of TRH in pharmaceutical formulations and spiked human urine samples with acceptable recoveries.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
E. Keskin, S. Allahverdiyeva, E. Şeyho, and Y. Yardım, “Determination of tramadol in pharmaceutical forms and urine samples using a boron-doped diamond electrode”, J. Serb. Chem. Soc., vol. 85, no. 7, pp. 923–937, Jul. 2020.
Section
Analytical Chemistry

References

F. Fathirad, A. Mostafavi, D. Afzali, Anal. Chim. Acta 940 (2016) 65 (http://dx.doi.org/10.1016/j.aca.2016.08.051)

K. S. Lewis, N. H. Han, Am. J. Heal. Pharm. 54 (1997) 643 (http://dx.doi.org/https://doi.org/10.1093/ajhp/54.6.643)

M. M. Foroughi, S. Jahani, H. Hassani Nadiki, Sensors Actuators, B 285 (2019) 562 (http://dx.doi.org/10.1016/j.snb.2019.01.069)

M. Nobilis, J. Kopecký, J. Květina, J. Chládek, Z. Svoboda, V. Voříšek, F. Perlík, M. Pour, J. Kuneš, J. Chromatogr., A 949 (2002) 11 (http://dx.doi.org/10.1016/S0021-9673(01)01567-9)

T. Madrakian, A. Afkhami, H. Mahmood-Kashani, M. Ahmadi, Talanta 105 (2013) 255 (http://dx.doi.org/10.1016/j.talanta.2012.12.039)

N. A. Ghalwa, H. M. Abu-Shawish, F. R. Zaggout, S. M. Saadeh, A. R. Al-Dalou, A. A. Abou Assi, Arab. J. Chem. 7 (2014) 708 (http://dx.doi.org/10.1016/j.arabjc.2010.12.007)

G. Saccomanni, S. Del Carlo, M. Giorgi, C. Manera, A. Saba, M. Macchia, J. Pharm. Biomed. Anal. 53 (2010) 194 (http://dx.doi.org/10.1016/j.jpba.2010.03.016).

I. Y. Zaghloul, M. A. Radwan, J. Liq. Chromatogr. Relat. Technol. 20 (1997) 779 (http://dx.doi.org/10.1080/10826079708014142)

S. Glavanović, M. Glavanović, V. Tomišić, Spectrochim. Acta, A 157 (2016) 258 (http://dx.doi.org/10.1016/j.saa.2015.12.020)

S. N. Ding, J. J. Xu, W. J. Zhang, H. Y. Chen, Talanta 70 (2006) 572 (http://dx.doi.org/10.1016/j.talanta.2006.01.017)

V. Gambaro, C. Benvenuti, L. De Ferrari, L. DellAcqua, F. Farè, Farmaco 58 (2003) 947 (http://dx.doi.org/10.1016/S0014-827X(03)00153-8).

H. M. Abu-Shawish, N. A. Ghalwa, F. R. Zaggout, S. M. Saadeh, A. R. Al-Dalou, A. A. A. Assi, Biochem. Eng. J. 48 (2010) 237 (http://dx.doi.org/10.1016/j.bej.2009.10.019)

A. Afkhami, H. Ghaedi, T. Madrakian, M. Ahmadi, H. Mahmood-Kashani, Biosens. Bioelectron. 44 (2013) 34 (http://dx.doi.org/10.1016/j.bios.2012.11.030)

S. Chitravathi, N. Munichandraiah, J. Electroanal. Chem. 764 (2016) 93 (http://dx.doi.org/10.1016/j.jelechem.2016.01.021)

Y. Yardım, A. Levent, E. Keskin, Z. Şentürk, Talanta 85 (2011) 441 (http://dx.doi.org/10.1016/j.talanta.2011.04.005)

S. Pysarevska, L. Dubenska, S. Plotycya, Ľ. Švorc, Sensors Actuators, B 270 (2018) 9 (http://dx.doi.org/10.1016/j.snb.2018.05.012)

Ľ. Švorc, K. Borovská, K. Cinková, D. M. Stanković, A. Planková, Electrochim. Acta 251 (2017) 621 (http://dx.doi.org/10.1016/j.electacta.2017.08.077)

Y. Li, J. Hao, G. Li, J. Dispers. Sci. Technol. 27 (2006) 781 (http://dx.doi.org/10.1080/01932690500461172)

A. M. Santos, F. C. Vicentini, L. C. S. Figueiredo-Filho, P. B. Deroco, O. Fatibello-Filho, Diam. Relat. Mater. 60 (2015) 1 (http://dx.doi.org/10.1016/j.diamond.2015.10.005)

O. Yunusoğlu, S. Allahverdiyeva, Y. Yardım, Z. Şentürk, Electroanalysis 32 (2020) 429 (http://dx.doi.org/10.1002/elan.201900452)

M. Soleimani, M. G. Afshar, A. Shafaat, G. A. Crespo, Electroanalysis 25 (2013) 1159 (http://dx.doi.org/10.1002/elan.201200601)

E. Mynttinen, N. Wester, T. Lilius, E. Kalso, J. Koskinen, T. Laurila, Electrochim. Acta 295 (2019) 347 (http://dx.doi.org/10.1016/j.electacta.2018.10.148).

S. Y. Al Samarrai, F. M. Abdoon, K. K. Hashim, Microchem. J. 146 (2019) 588 (http://dx.doi.org/10.1016/j.microc.2019.01.041)

F. Ghorbani-Bidkorbeh, S. Shahrokhian, A. Mohammadi, R. Dinarvand, Electrochim. Acta 55 (2010) 2752 (http://dx.doi.org/10.1016/j.electacta.2009.12.052)

A. Babaei, A. R. Taheri, M. Afrasiabi, J. Braz. Chem. Soc. 22 (2011) 1549 (http://dx.doi.org/10.1590/S0103-50532011000800020)

B. J. Sanghavi, A. K. Srivastava, Anal. Chim. Acta 706 (2011) 246 (http://dx.doi.org/10.1016/j.aca.2011.08.040)

A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Anal. Chim. Acta 831 (2014) 50 (http://dx.doi.org/10.1016/j.aca.2014.04.061)

B. Deiminiat, G. H. Rounaghi, M. H. Arbab-Zavar, Sensors Actuators, B 238 (2017) 651 (http://dx.doi.org/10.1016/j.snb.2016.07.110)

E. Çidem, T. Teker, M. Aslanoglu, Microchem. J. 147 (2019) 879 (http://dx.doi.org/10.1016/j.microc.2019.04.018)

R. Kiran, E. Scorsone, P. Mailley, P. Bergonzo, Anal. Chem. 84 (2012) 10207 (http://dx.doi.org/10.1021/ac301177z)

F. Dönmez, Y. Yardım, Z. Şentürk, Diam. Relat. Mater. 84 (2018) 95 (http://dx.doi.org/10.1016/j.diamond.2018.03.013).