Bioremediation of groundwater contaminated with petroleum hydrocarbons applied at a site in Belgrade (Serbia)

Main Article Content

Sandra Sretko Bulatović
Nenad Marić
Tatjana Šolević Knudsen
Jelena Avdalović
Mila Vladislav Ilić
Branimir Jovančićević
Miroslav M Vrvić

Abstract

Due to their extensive use, petroleum hydrocarbons are among the most common groundwater contaminants. Compared to the traditional methods of physical pumping of contamination from the aquifer and subsequent treat­ment (i.e., pump and treat), bioremediation is an economically cost-effective technology. The aim of this remediation approach is to transform biologically contaminants, most often by microbiological activity, into non-toxic com­pounds. More precisely, it is an active remediation process that involves bio­stimulation (increase of aquifer oxygenation, addition of nutrients) and/or bio­augmentation (injection of a concentrated and specialized population of micro­organisms). Using both biostimulation and bioaugmentation, enhanced in situ groundwater bioremediation was applied at a hydrocarbon-contaminated site in Belgrade. The bioremediation treatment, applied over twelve months, was highly efficient in reducing the concentrations of total petroleum hydrocarbon (TPH) to acceptable levels. The concentration of TPH in the piezometer P-5 was reduced by 98.55 %, in the piezometer P-6 by 98.30 % and in the piezo­meter P-7 by 98.09 %. These results provided strong evidence on the potential of this remediation approach to overcome site-limiting factors and enhance microbiological activity in order to reduce groundwater contamination.

Article Details

How to Cite
[1]
S. S. Bulatović, “Bioremediation of groundwater contaminated with petroleum hydrocarbons applied at a site in Belgrade (Serbia)”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1067-1081, Aug. 2020.
Section
Environmental Chemistry

References

P. Logeshwaran, M. Megharaj, S. Chadalavada, M. Bowman, R. Naidu, Environ. Technol. Innov. 10 (2018) 175 (https://doi.org/10.1016/j.eti.2018.02.001)

D. M. Mackay, J. A. Cherry, Environ. Sci. Technol. 23 (1989) 630 (https://doi.org/10.1021/es00064a001)

V. P. Beškoski, G. Đ. Gojgić-Cvijović, J. S. Milić, M. V. Ilić, S. B. Miletić, B. S. Jovančićević, M. M. Vrvić, Hem. Ind. 66 (2012) 275 (in Serbian) (https://doi.org/10.2298/HEMIND110824084B)

S. Fuentes, V. Méndez, P Aguila, M. Seeger, Appl. Microbiol. Biotechnol. 98 (2014) 4781 (https://doi.org/10.1007/s00253-014-5684-9)

R. Das, B. N. Tiwary, in Bioremediation of pollutants, D. K. Maheshwari, R. C. Dubey, Eds., IK International Publishing House Pvt., New Delhi, 2012, p.175 (https://www.kopykitab.com/ebooks/2016/04/6448/sample/sample_6448.pdf) (visited December 25, 2019)

P. J. Alvarez, W. A. Illman, Bioremediation and natural attenuation: process fundamentals and mathematical models, Willey, New York, 2006 (https://doi.org/10.1002/047173862X.fmatter)

H. Lv, X. Su, Y. Wang, Z. Dai, M. Liu, Chemosphere 206 (2018) 293 (https://doi.org/10.1016/j.chemosphere.2018.04.171)

A. I. Okoh, Biotechnol. Mol. Biol. Rev. 1 (2006) 38 (https://academicjournals.org/journal/BMBR/article-abstract/E94E08A40207)

A. D. Venosa, X. Zhu, Spill Sci. Technol. Bull. 8 (2003) 163 (http://dx.doi.org/10.1016/S1353-2561(03)00019-7)

N. Agrawal, A. K. Dixit, Int. J. Curr. Microbiol. App. Sci. 4 (2015) 429 (https://www.researchgate.net/publication/275342834)

A. Nzila, Int. J. Environ. Res. Public Health 15 (2018) 1 (https://doi.org/10.3390/ijerph15122782)

D. Singh, K. Mishra, G. Ramanthan, in Wastewater Treatment Engineering, M. Samer, Ed., IntechOpen, London, 2015, p. 51 (https://doi.org/10.5772/59384)

L. M. Gieg, C. R. A. Toth, in Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, M. Boll, Ed., Springer Nature, Cham, 2017, p. 1 (https://doi.org/10.1007/978-3-319-33598-8)

A. Agrawal, L. M. Gieg, Front. Microbiol. 4 (2013) 1 (https://doi.org/10.3389/fmicb.2013.00140)

C. Vogt, S. Kleinsteuber, H.-H. Richnow, Microb. Biotechnol. 4 (2011) 710 (https://doi.org/10.1111/j.1751-7915.2011.00260.x)

C. S. Karigar, S. S. Rao, Enzyme Res. 2011 (2011) 1 (http://dx.doi.org/10.4061/2011/805187)

A. A. Olajire, J. P. Essien, J. Pet. Environ. Biotechnol. 5 (2014) 1 (http://dx.doi.org/10.4172/2157-7463.1000195).

E. A. Paul, F. E. Clark, Soil Microbiology and Biochemistry, Elsevier Inc., San Diego, CA, 1989 (ISBN: 9781483288956)

P. B. Bedient, H. S. Rifai, C. J. Newell, Ground water contamination transport and remediation, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999 (ISBN:0130138401)

Project for remediation of the contaminated site at the location of New Belgrade thermal plant, M. M. Vrvić, Ed., Brem group, Belgrade, 2015 (in Serbian) (http://www.bremgroup.com/tonb_doc/BE-IZVESTAJ-KOMPLETAN-BE-130615.pdf) (visited December 25, 2019)

J. Avdalović, S. Miletić, M. Ilić, J. Milić, T. Šolević Knudsen, A. Djurić, D. Nešković, M. Vrvić, Zaštita Materijala 57 (2016) 389 (in Serbian) (https://doi.org/10.5937/ZasMat1603389A)

V. P. Beškoski, G. Gojgić Cvijović, J. Milić, M. Ilić, S. Miletić, T. Šolević, M. M. Vrvić, Chemosphere 83 (2011) 34 (https://doi.org/10.1016/j.chemosphere.2011.01.020)

EN ISO 9377-2 : 2000: Water quality- Determination of hydrocarbon oil index, Part 2: Method using solvent extraction and gas chromatography (2000)

SRPS EN 27888:2009: Kvalitet vode - Određivanje električne provodnosti (2009) (in Serbian)

U. S. EPA Hach LDO Method 10360, 2003 (https://www.hach.com/epa10360) (visited December 25. 2019.)

SRPS EN ISO 10523:2016: Kvalitet vode — Određivanje pH-vrednosti (2016) (in Serbian)

U. S. EPA 170.1: Temperature (Thermometric) (http://www.caslab.com/EPA-Methods/PDF/EPA-Method-1701.pdf) (visited December 25. 2019.)

SRPS EN 12260:2008: Kvalitet vode - Određivanje sadržaja azota - Određivanje azota u jedinjenjima (TNb) posle oksidacije do oksida azota (2008) (in Serbian)

SRPS EN ISO 6878:2008: Kvalitet vode - Određivanje fosfora - Spektrometrijska metoda sa amonijum-molibdatom (2008) (in Serbian)

E. A. Atekwana, D. D. Werkema, J. W. Duris, S. Rossbach, E. A. Atekwana, W. A. Sauck, D. P. Cassidy, J. Means, F, D. Legall, Geophysics 69 (2004) 56 (https://doi.org/10.1190/1.1649375)

The regulation on the programme for the systematic monitoring of soil quality, soil degradation risk assessment indicators and methodology for the development of remediation programmes, RS Official Gazette (No88/2010) (in Serbian) (http://www.se-pa.gov.rs/download/Uredba_o_programu_pracenja_kvaliteta_zemljista.pdf) (visited December 25. 2019.)

M. Krmpotić, Model survey of the aquifer contamination by petroleum products at the location of New Belgrade thermal plant, HidroGeoEko, Belgrade, 2015, p. 375 (in Serbian) (http://www.bremgroup.com/tonb_doc/BE-IZVESTAJ-KOMPLETAN-BE-130615.pdf) (visited December 25. 2019.)

T. C. Hazen, in Handbook of Hydrocarbon and Lipid Microbiology, K. N. Timmis, Ed., Springer, Berlin, 2010, p. 2583 (https://doi.org/10.1007/978-3-540-77587-4_19)

U.S. EPA, How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites, in In-Situ Groundwater Bioremediation, Chapter X, EPA 510-B-17-003, 2017 (https://clu-in.org/download/remed/510B95007/tum_ch10.pdf) (visited December 25, 2019)

K. M. Scow, K. A. Hicks, Curr. Opin. Biotechnol. 16 (2005) 246 (https://doi.org/10.1016/j.copbio.2005.03.009)

D. Menendez-Vega, J. L. R. Gallego, A. I. Pelaeza, G. Fernandez de Cordoba, J. Moreno, D. Munoz, J. Sanchez, Eur. J. Soil Biol. 43 (2007) 310 (https://doi.org/10.1016/j.ejsobi.2007.03.005)

R. Hosokawa, M. Nagai, M. Morikawa, H. Okuyama, World J. Microbiol. Biotechnol. 25 (2009) 1519 (https://doi.org/10.1007/s11274-009-0044-0).

Most read articles by the same author(s)