Improvement and modification of the energy-dispersive X-ray fluorescence method for the determination of metal elements in cement leachates – A chemometric approach
Main Article Content
Abstract
A modification of an analytical procedure for the energy-dispersive X-ray fluorescence (EDXRF) quantification of ten chemical elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb and Zn) in the leachates obtained from cement binders was developed. Twenty-nine testing samples were used in the experiment. All samples were based on Portland cement. Fly ash of different origin, zeolite and bentonite were employed as mineral additives in the cement binders. Distilled water was used as the leachate. Validation of the modified EDXRF procedure was conducted in terms of limits of detection and quantification, working range, linearity, selectivity, precision, trueness, and robustness. Traceability of the procedure was established using certified reference materials. Uncertainty of measurement was confirmed via an "in-house" laboratory validation approach. The expanded uncertainties for the ten analysed elements were obtained for the entire working range of the EDXRF method. Robustness of the modified EDXRF procedure was assessed by means of a chemometric in-house approach. The results obtained by the modified X-ray fluorescence method were additionally correlated to those acquired by inductively coupled plasma optical emission spectrometry to confirm that EDXRF could be used as an effective and reliable alternative method for analysis of cement leachates.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
F. Jiao, L. Zhang, Z. Dong, T. Namioka, N. Yamada, Fuel Process. Tech. 152 (2016) 108 (https://doi.org/10.1016/j.fuproc.2016.06.013)
L. Zeyuan, Y. Yang, L. Ming, Z. Jia, S. Fucheng, H. Xin, Z. Jizhi, Q. Guangren, Waste Manage. 84 (2019) 329 (https://doi.org/10.1016/j.wasman.2018.11.049)
M. P. Mubiayi, M. E. Makhatha, E. T. Akinlabi, Mater. Today 5 (2018) 17802 (https://doi.org/10.1016/j.matpr.2018.06.105)
A. Terzić, L. Pezo, N. Mijatović, J. Stojanović, M. Kragović, Lj. Miličić, Lj. Andrić, Con. Build. Mat. 180 (2018) 199 (https://doi.org/10.1016/j.conbuildmat.2018.06.007)
N. Mijatović, A. Terzić, L. Pezo, Lj. Miličić, A. Milosavljević, D. Živojinović, Sci. Sin. 51 (2019) 429 (https://doi.org/10.2298/SOS1904429M)
A. Król, K. Mizerna, M. Bożym,J. Hazard. Mater. 384 (2020) 121502 (https://doi.org/10.1016/j.jhazmat.2019.121502)
M. Mahedia, B. Cetinb, A. Dayioglu, Waste Manage. 95 (2019) 334 (https://doi.org/10.1016/j.wasman.2019.06.018)
J. Haberl, R. Koralewska, S. Schlumberger, M. Schuster, Waste Manage. 75 (2018) 361 (https://doi.org/10.1016/j.wasman.2018.02.015)
L. Borgesea, R. Dalipia, A. Riboldia, F. Biloa, A. Zaccoa, S. Federicia, M. Bettinellic, E. Bontempia, L. Depero, Talanta 181 (2018) 165 (https://doi.org/10.1016/j.talanta.2017.12.087)
A. Chandrasekarana, R. Ravisankar, Appl. Radiat. Isot. 147 (2019) 76 (https://doi.org/10.1016/j.apradiso.2019.01.009)
M. Tiwari, S.K. Sahu, R.C. Bhangare, P.Y. Ajmal, G.G. Pandit, Appl. Radiat. Isot. 90 (2014) 53 (https://doi.org/10.1016/j.apradiso.2014.03.002)
Y. Fiamegos, M. Beatriz, Spectrochim. acta, B 150 (2018) 59 (https://doi.org/10.1016/j.sab.2018.10.009)
C. García-Florentinoa, M. Magureguib, H. Morillasa, I. Marcaidaa, J. Madariaga, Microchem. J. 133 (2017) 104 (https://doi.org/10.1016/j.microc.2017.03.020)
S. Zhoua, Z. Yuanb, Q. Chenga, Z. Zhanga, J. Yang, Environ. Pollut. 243 (2018) 1325 (https://doi.org/10.1016/j.envpol.2018.09.087)
E. Marguí, R. Van Grieken, C. Fontas, M. Hidalgo, I. Queralt, Appl. Spectrosc. Rev. 45 (2010) 179 (https://doi.org/10.1080/05704920903584198)
D. Pearsona, S. Chakrabortyb, B. Dudaa, B. Lic, D. Weindorfa, S. Debd, E. Brevike, D. Rayf, J. Hydrol. 544 (2017) 172 (https://doi.org/10.1016/j.jhydrol.2016.11.018)
A. Turner, A. Taylo, Talanta 190 (2018) 498 (https://doi.org/10.1016/j.talanta.2018.08.024)
P. Szajerskia, A. Bogobowicza, H. Bemb, A. Gasiorowskia, J. Clean. Prod. 222 (2019) 90 (https://doi.org/10.1016/j.jclepro.2019.03.010)
N. Mijatović, A. Terzić, L. Pezo, Lj. Miličić, D. Živojinović, Spectrochim. acta, B 162 (2019) 105729 (https://doi.org/10.1016/j.sab.2019.105729)
SRPS EN 12457-4: Characterization of waste - Leaching - Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction), 2008
IUPAC, Nomenclature, symbols, units and their usage in spectrochemical analysis-III. Analytical flame spectroscopy and associated non-flame procedures, Spectrochim. Acta, B 33 (1978) 247 (https://doi.org/10.1016/0584-8547(78)80045-7)
Low Level Waste Repository Ltd. (https://assets.publishing.ser¬vi¬ce.gov.uk/gover-nment/uploads/system/uploads/attachment_data/file/690840/WasteAcceptanceCriteriaSupercompactableWSC-WAC-SUP.pdf), accessed 23. 04. 2020
V. Barwicka, S. Wood, J. Anal. At. Spectrom. 25 (2010) 785 (https://doi.org/10.1039/B919885G)
M. Thompson, S. Ellison, R. Wood, Pure Appl. Chem. 74 (2002) 835 (http://doi.org/10.1351/pac200274050835)
Nordtest (http://www.citac.cc/Bertil Magnusson - NORDTEST Guide on uncertainty - 2003.pdf), accessed 22. 04. 2020
D. Schiavo, L.C. Trevizan, E.R.P. Filho, J.A. Nóbrega, Spectrochim. Acta, B 64 (2009) 544 (https://doi.org/10.1016/j.sab.2009.05.009)
Bureau international des poids et mesures (https://www.bipm.org/en/publi-cations/gu¬ides/gum.html), accessed 20. 04. 2020.