CO oxidation over alumina monolith impregnated with oxides of copper and manganese

Main Article Content

Thien Huu Pham
https://orcid.org/0000-0001-7355-8150
Viet Bang Bui
https://orcid.org/0000-0001-9249-8384
Ha An Quoc Than
https://orcid.org/0000-0002-7446-7127

Abstract

In this work, preparation and performance of catalysts as using a simple method and highly efficient heterogeneous nanocatalyst is described. The main advantages of the reaction are high yields for the oxidation of CO at low temperature. The catalysts based-on oxides of copper and manganese supported on alumina monoliths were prepared by the different methods: plasma corona discharge and wet impregnation. Structure and physical properties of catalysts were characterized by FT-IR, XRD, TEM, EDX and TG/DTA. The results showed that the using of plasma corona discharge at atmospheric pressure in the preparation process of catalyst gives a smaller particle size, uniform dispersion when compared with the catalysts prepared by the wet impregnation methods. The catalytic activities of these catalysts were investigated for complete oxidation of carbon monoxide (3000 ppm) to carbon dioxide in the air at the atmospheric pressure. On a single oxide catalyst, 10CuO/monolith was better than 10MnO2/monolith in the same experimental condition. With multi-oxide catalysts, all catalyst samples are more active than a single-oxide catalyst in the same impregnated content. In particular, the catalyst is prepared by plasma corona discharge indicate the best oxidation capacity of carbon monoxide (CO).

Article Details

How to Cite
[1]
T. H. Pham, V. B. Bui, and H. A. Q. Than, “CO oxidation over alumina monolith impregnated with oxides of copper and manganese”, J. Serb. Chem. Soc., Jan. 2021.
Section
Environmental Chemistry

References

H. Kinoshita, H. Türkan, S. Vucinic, S. Naqvi, R.Bedair, R. Rezaee, A. Tsatsakis, Toxicol. Rep. 7 (2020) 169 (https://doi.org/10.1016/j.toxrep.2020.01.005)

R. J. Levy, Neurotoxicol. Teratol. 49 (2015) 31 (https://doi.org/10.1016/j.ntt.2015.03.001)

J. Xu, T. White, P. Li, C. He, J. Yu, W. Yuan. Y-F. Han, J. Am. Chem. Soc.132 (2010) 10398 (https://doi.org/10.1021/ja102617r)

A. S. Ivanova, E. M. Slavinskaya, R. V. Gulyaev, V. I. Zaikovskii, О. А. Stonkus, I. G. Danilova. L. M. Plyasova, I. A. Polukhin, A. I. Boronin, Appl. Catal. B: Environ.97 (2010) 57 (https://doi.org/10.1016/j.apcatb.2010.03.024)

H. Huang, D. Y. C. Leung, D. Ye, J. Mater. Chem. 21 (2011) 9647 (https://doi.org/10.1039/C1JM10413F)

Y. Lang, J. Zhang, Z. Feng, X. Liu, Y. Zhu, T. Zeng, Y. Zhao, R. Chen, B. Shan, Catal. Sci. Technol. 8 (2018) 5490 (https://doi.org/10.1039/C8CY01263F)

D. A. Aguilera, A. Perez, R. Molina, S. Moreno, Appl. Catal. B: Environ. 104 (2011) 144 (https://doi.org/10.1016/j.apcatb.2011.02.019)

M. R. Morales, B. P. Barbero, L. E. Cadús, Fuel 87 (2008) 1177 (https://doi.org/10.1016/j.fuel.2007.07.015)

P. W. Park, J. S. Ledford, Appl. Catal. B: Environ. 15 (1998) 221 (https://doi.org/10.1016/S0926-3373(98)80008-8)

K. Y. Koo, U. H. Jung, W. L. Yoon, Int. J. Hydrog. Energy. 39 (2014) 5696 (https://doi.org/10.1016/j.ijhydene.2014.01.128)

Z-H. Li, S-H. Tian, H-T. Wan, H-B. Tian, J. Mol. Catal. A-Chem. 211 (2004) 149 (https://doi.org/10.1016/j.molcata.2003.10.003)

W. Hua, L. Jin, X. He, J. Liu, H. Hu, Catal. Commun. 11 (2010) 968 (https://doi.org/10.1016/j.catcom.2010.04.007)

M. H. Chen, W. Chu, X. Y. Dai, X. W. Zhang, Catal. Today. 89 (2004) 201 (https://doi.org/10.1016/j.cattod.2003.11.027)

S. Dey, G. C. Dhal, D. Mohan, R. Prasad, Bull. Chem. React. Eng. Catal. 12 (2017) 437 (https://doi.org/10.9767/bcrec.12.3.900.437-451)

D. P. Dubal, G. S. Gund, C. D. Lokhande, R. Holze, Mat. Res. Bull. 48 (2013) 923 (https://doi.org/10.1016/j.materresbull.2012.11.081)

M. Aghazadeh, M. Asadi, M. G. Maragheh, M. R. Ganjali, P. Norouzi, F. Faridbod, App. Surf. Sci. 364 (2016) 726 (https://doi.org/10.1016/j.apsusc.2015.12.227)