Trace determination of isoniazid at micro level using kinetic spectrophotometric method Scientific paper

Main Article Content

Rupal Yadav
https://orcid.org/0000-0002-8529-4444
Indresh Kumar
https://orcid.org/0000-0003-4813-5257
Radhey Mohan Naik
https://orcid.org/0000-0003-1782-9125

Abstract

An effective and fairly inexpensive spectrophotometric method for tracing the determination of isoniazid (INH) in pure form, as well as in phar­maceutical formulations, has been developed through the ligand substitution reaction between INH and aquapentacyanoruthenate (II) ion ([Ru(CN)5OH2]3-) in aqueous medium at λmax = 502 nm. The fixed time procedure has been emp­loyed under optimum reaction conditions. The calibration equations, rel­ating absorbance measured at 502 nm at fixed times (tn = 2, 5 and 7 min) and cINH in linear range 1.37‑27.43 µg mL-1, were used for the trace determination of INH, which has been reported in the present investigation and are in agreement with official and reported methods. The percentage recovery has been calculated and found to be within the range of 99–101 % in the analysis of different pharmaceutical samples. The results reveal that the use of common recipients as the used additives do not produce any type of interference in the suggested method. The validity of the proposed method was also checked by statistical analysis which agreed with the results obtained using the official method. The present method is very simple, reproducible, sensitive and it can be adopted for trace determination of INH in different samples without using extracting agent.

Article Details

How to Cite
[1]
R. Yadav, I. Kumar, and R. M. Naik, “Trace determination of isoniazid at micro level using kinetic spectrophotometric method: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 5, pp. 507-519, Jun. 2021.
Section
Analytical Chemistry

References

Global Tuberculosis Report 2012, World Health Organization, 2012 (https://apps.who.int/iris/handle/10665/75938)

A. Korokovals, J. H. Burckhalter, J. Chem. Educ. 54 (1977) A497. (https://dx.doi.org/10.1021/ed054pA497.2)

H. Meyer, J. Mally, Monatsh. Chem. 33 (1912) 393. (https://dx.doi.org/10.1007/BF01517946)

H. H. Fox, Science 116 (1952) 129 (https://www.jstor.org/stable/1680129)

C. Vilcheze,W. R. Jacobs, Ann. Rev. Microbiol. 61 (2007) 35 (https://dx.doi.org/10.1146/annurev.micro.61.111606.122346)

K. Johnsson, D. S. King, P. G. Schultz, J. Am. Chem. Soc. 117 (1995) 5009. (https://dx.doi.org/10.1021/ja00122a038)

D. A. Rozwarski, G. A. Grant, D. H. R. Barton, W. R. Jabobs, J. C. Sacchettini, Science 279 (1998) 98 (https://dx.doi.org/10.1126/science.279.5347.98)

A. M. El-Bbrashy, L. R. Elhussein, Anal. Lett. 30 (1997) 609 (https://dx.doi.org/10.1080/00032719708001805)

Q.-M. Li, Z.-J. Yang, J. Chin. Chem. Soc. 53 (2006) 383 (https://dx.doi.org/10.1002/jccs.200600049)

J. V. de Assis, M. G. Teixeira, C. G. P. Soares, J. F. Lopes, G. S. L. Carvalho, M. C. S. Lourenço, M. V. de Almeida, W. B. de Almeida, S. A. Fernandes, Eur. J. Pharm. Sci. 47 (2012) 539. (https://dx.doi.org/10.1016/j.ejps.2012.07.015)

J. A.García Bautista, J. V.García Mateo, J. M. Calatayud, Anal. Let. 31 (1988) 1209 (http://dx.doi.org/10.1080/00032719808002857)

Z. Q. Zhang, Z. X. Cao, X. M. He, X. M. Li, Y. F. Li, J. Anal. Sci. 12 (1996) 52 (http://en.cnki.com.cn/Article_en/CJFDTotal-FXKX199601015.htm)

J. Xi, B. Shi, X. Ai, Z. He, J. Pharm. Biomed. Anal. 36 (2004) 237 (https://dx.doi.org/10.1016/j.jpba.2004.05.021)

M. Acedo-Valenzuela, A. Espinosa-Mansilla, A. M. D. Pena, F. Canada-Canada, Anal. Bioanal. Chem. 374 (2002) 432. (http://dx.doi.org/10.1007/s00216-002-1494-5)

B. Haghighi, S. Bozorgzadeh, Microchem. J. 95 (2010) 192. (https://dx.doi.org/10.1016/j.microc.2009.11.012)

M. A. Karimi, M. Mazloum-Ardakani, M. H. Mashhadizadeh, F. Banifatemeh, Croat. Chem. Acta 82 (2009) 729 (https://hrcak.srce.hr/45534)

R. M. Kulkarni, D. C. Bilehal, S. T. Nandibewoor, Anal. Sci. 20 (2004)743 (https://dx.doi.org/10.2116/analsci.20.743)

M. R. Majidi, A. Jouyban, K. Asadpour-Zeynali, J. Electroanal. Chem. 89 (2006) 32 (https://dx.doi.org/10.1016/j.jelechem.2006.01.016)

J. S. Singh. Res. J. Pharm. Technol. 13 (2020) 4061 (https://doi.org/10.5958/0974-360X.2020.00718.0)

M. Y. Khuhawar, L. A. Zardari, J. Food Drug Anal. 14 (2006) 323 (http://iarscs.usindh.edu.pk/myk/papers/2006/1442p323328.pdf)

D. Hebel, S. Guermouche, M. H. Guermuche, JPC-J. Planar. Chromat. 10 (1997) 453 (http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2127215)

S. Guermouche, M. H. Guermouche, J. Chromatogr. Sci. 42 (2004) 250 (https://dx.doi.org/10.1093/chromsci/42.5.250)

M. Acedo-Valenzuela, A. Espinosa-Mansilla, A. M. D. Pena, F. Canada-Canada, Anal. Bioanal. Chem. 374 (2002) 432 (https://dx.doi.org/10.1007/s00216-002-1494-5)

I. L. Tsai, H. Y. Liu, P. H. Kuo, J. Y. Wang, L. J. Shen, C. H. Kuo, Anal. Bioanal. Chem. 401 (2011) 2205 (https://dx.doi.org/10.1007/s00216-011-5285-8)

M. Y. Khuhawar, F. M. A. Rind, J. Chromatogr., B 766 (2002) 357 (https://dx.doi.org/10.1016/S0378-4347(01)00510-2)

M. C. Gennaro, R. Calvino, C. Abrigo, J. Chromatogr., B 754 (2001) 477 (https://dx.doi.org/10.1016/S0378-4347(01)00037-8)

A. Safavi, M. Bagheri, Spectrochim. Acta, A 70 (2008)735 (https://dx.doi.org/10.1016/j.saa.2007.09.001)

G. F. Dos. S. Fernandes, H. Regina. Nunes Salgado, J. L. D.Santos, Crit. Rev. Anal. Chem. 47 (2017) 298 (https://doi.org/10.1080/10408347.2017.1281098)

R. M. Naik, A. Agarwal, S. Prasad, Spectrochim. Acta, A 74 (2009) 887 (https://dx.doi.org/10.1016/j.saa.2009.08.029)

R. M. Naik, A. Agarwal, S. Prasad, A. K. Verma, Microchem. J. 93 (2009) 43 (https://dx.doi.org/10.1016/j.microc.2009.04.006)

R. M. Naik, J. Sarkar, S. Prasad, Microchem. J. 88 (2008) 45 (https://dx.doi.org/10.1016/j.microc.2007.09.003)

S. Prasad, R. M. Naik, A. Srivastava, Spectrochim. Acta, A 70 (2008) 958 (https://dx.doi.org/10.1016/j.saa.2007.10.011)

R. M. Naik, B. Kumar, A. Asthana, Spectrochim. Acta, A 75 (2010) 1152 (https://dx.doi.org/10.1016/j.saa.2009.12.078)

A. Agarwal, S. Prasad, R. M. Naik, Microchem. J. 128 (2016) 181 (https://dx.doi.org/10.1016/j.microc.2016.04.005)

R. M. Naik, S. Prasad, B. Kumar, S. B. S. Yadav, A. Asthana, M. Yoshida, Microchem. J. 111 (2013) 108 (https://dx.doi.org/10.1016/j.microc.2013.02.011)

V. Chand, S. Prasad, J .Hazard. Mater. 165 (2009) 780 (https://dx.doi.org/10.1016/j.jhazmat.2008.10.076)

United States Pharmacopoeia XXIV, U.S.P. Convention, Rockville, MD20852, USA, 2000 (https://www.pharmaceuticalonline.com/doc/united-states-pharmacopoeia-xxiv-national-for-0001

A. I. Vogel, J. Bassett, Vogel’s text book of quantitative inorganic analysis, 4th ed., Longman, New York, 1978 (ISBN-13: 978-0582463219)

R.C. Weast, CRC Handbook of Chemistry and Physics, 60th ed., CRC Press, Boca Raton, FL, 1979 (ISBN-13, https://www.biblio.com/9780849304606)

C. R. Johnson, R. E. Shepherd, Inorg. Chem. 22 (1983) 2439 (https://dx.doi.org/10.1021/ic00159a020)

K. W. Hicks, G. Chappelle, Inorg. Chem. 19 (1980) 1623 (https://dx.doi.org/10.1021/ic50208a038).