Density functional theory calculation of propane cracking mechanism over chromium (III) oxide by cluster approach
Main Article Content
Abstract
The catalyst coking and production of undesired products during the transformation of propane into propylene has been the critical challenge in the on purpose approach of propylene production. The mechanism contributing to this challenge was theoretically investigated through the analysis of cracking reaction routes. The study carried out employed the use of a DFT and cluster approach in order to understand the reactions that promote cooking of the catalyst and in the search for the kinetic and thermodynamic data of the reaction mechanism involved in the process over Cr2O3. The RDS and feasible route that easily promote the production of small hydrocarbons like ethylene, methane, and many others were identified. The study suggests Cr-site substitution or co-feeding of oxygen, as a way that aids in preventing deep dehydrogenation in the conversion of propane to propylene. This information will help in improving the Cr2O3 catalyst performance and further increase the production yield.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Asadi, L. Vafi, R. Karimzadeh, Micropor. Mesopor. Mat. 255 (2018) 253 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)
H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, Industrial Organic Chemicals, John Wiley & Sons, Hoboken, FL, 2000, p. 211 (https://dx.doi.org/10.1002/0471651540)
S. Budavari, Propylene - The Merck Index, Merck & Co., Kenilworth, NJ, 1996, p. 1
Y. Ren, F. Zhang, W. Hua, Y. Yue, Z. Gao, Catal. Today 148 (2009) 3 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)
J. C. Philip, Survey of Industrial Chemistry, Springer, Berlin, 2001, p. 2
L. Yan, Z. H. Li, J. Lu, K. N. Fan, J. Phys. Chem., C 112 (2008) 51 (https://dx.doi.org/10.1021/jp807864z)
Y. Ming-Lei, Y. A. Zhu, X. G. Zhou, Z. J. Sui, D. Chen, ACS Catal. 2 (2012) 1247 (https://dx.doi.org/10.1021/cs300031d)
N. Lauri, H. Karoliina, ACS Catal. 3 (2013) 3026 (https://dx.doi.org/10.1021/cs400566y)
H. Timothy, Computational study of the catalytic dehydrogenation of propane on Pt and Pt3Ga catalyst, Ghent University, Ghent, 2015, p. 15
S. Saerens, M. K. Sabbe, V. V. Galvita, E. A. Redekop, M.-F. Reyniers, G. B. Marin, ACS Catal. 7 (2017) 7495 (https://dx.doi.org/10.1021/acscatal.7b01584)
T. Oyegoke, F. N. Dabai, A. Uzairu, B. Jibril, B. J. Pure Appl. Sci. 11 (2018) 178 (https://dx.doi.org/10.4314/bajopas.v11i1.29S)
J. Zhang, Z. R-Jia, C. Q-Yu, S. Z-Jun, Z. X-Gui, Z. Y-An, Cat. Today (2020), in press (https://dx.doi.org/10.1016/j.cattod.2020.02.023)
E. Araujo-Lopez, L. Joos, B. D. Vandegehuchte, D. I. Sharapa, F. Studt, The J. of Phys. Chem. C 124 (2020) 3171 (https://dx.doi.org/10.1021/acs.jpcc.9b11424)
Y. Xie, R. Luo, G. Sun, S. Chen, Z. J. Zhao, R. Mu, RSC Chem. Sci. 11 (2020) 3845 (https://dx.doi.org/10.1039/C8CY00564H)
J. H. Warren, A guide to molecular mechanics and quantum chemical calculations, Wavefunction, Irvine, CA, 2003, p. 89
P. Brown, J. Forsyth, E. Lelievre-Berna, F. Tasset, J. Phys.: Condens. Matter 14 (2002) 1957 (https://dx.doi.org/10.1088/0953-8984/14/8/323)
W. Yanbiao, G. Xinxin, W. Jinla, Phys. Chem. Chem. Phys. 12 (2010) 2471 (https://dx.doi.org/10.1039/B920033A)
C. Compere, D. Costa, L. Jolly, E. Mauger, C. Gessner–Prettre, New J. Chem. 24 (2000) 993 (https://dx.doi.org/10.1039/B005313I)
S. Veliah, K. Xiang, R. Pandey, J. Recio, J. Newsam, J. Phys. Chem., B 102 (1997) 1126 (https://dx.doi.org/10.1021/jp972546m)
T. Oyegoke, F. N. Dabai, A. Uzairu, B. Y. Jibril, Eur. J. Mat. Sci. Eng. 5 (2020) 173 (https://dx.doi.org/10.36868/ejmse.2020.05.04.173)
N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications, Cambridge University Press, Cambridge, 2005
I. Kennedy, H. Geering, M. Rose, A. Crossan, Entropy 21 (2019) 454 (https://dx.doi.org/10.3390/e21050454)
T. L. Hill, An Introduction to Statistical Thermodynamics, Dover Publications Inc., New York, 1960
C. T. Campbell, L. H. Sprowl, L. Árnadóttir, J. Phys. Chem. 120 (2016) 10283 (https://dx.doi.org/10.1021/acs.jpcc.6b00975)
A. Savara, J. Phys. Chem., C 117 (2013) 15710 (https://dx.doi.org/10.1021/jp404398z)
L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem., C 121 (2017) 17 (https://dx.doi.org/10.1021/acs.jpcc.7b03318)
L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem., C 120 (2016) 9719 (https://dx.doi.org/10.1021/acs.jpcc.5b11616)
B. Y. Jibril, Appl. Catal., A 264 (2004) 193 (https://dx.doi.org/10.1021/ie000285o)
D. Yu-Jue, Z. H. Li, K. N. Fan, J. Mol. Catal., A 379 (2013) 122 (https://dx.doi.org/10.1016/j.molcata.2013.08.011)
P. Wang, S. N. Steinmann, G. Fu, C. Michel, P. Sautet ACS Catal. 7 (2017) 1955 (https://dx.doi.org/10.1021/acscatal.6b03544)
F. Maldonado, A. Stashans, Surface Rev. Lett. 23 (2016) 1650037 (https://dx.doi.org/10.1142/S0218625X16500372)
Z. J. Zhao, T. Wu, C. Xiong, G. Sun, R. Mu, L. Zeng, J. Gong, Angew. Chem. Int. Ed. 57 (2018) 6791 (https://dx.doi.org/10.1002/anie.201800123).