Solid–liquid phase equilibria of H2O–Mn(H2PO2)2–MnCl2–NaCl, H2O–Mn(H2PO2)2–MnCl2 and (H2O–NaCl–MnCl2 systems at 323.15 K
Main Article Content
Abstract
The solid–liquid phase equilibria (SLE) and densities of H2O–NaCl–
–MnCl2–Mn(H2PO2)2 quaternary system and H2O–NaCl–MnCl2 and H2O–
–MnCl2–Mn(H2PO2)2 ternary systems were investigated at 323.15 K by the isothermal solution saturation method. The analyses of the liquid and solid phases were used to determine the composition of the solid phase using the Schreinemakers graphic method. The ternary systems contain one invariant point, two invariant curves and two crystallization regions. In the quaternary system, there is one invariant point, three invariant curves and three crystallization areas corresponding to NaCl, MnCl2×4H2O and Mn(H2PO2)2×H2O. The crystallization area of Mn(H2PO2)2×H2O, being the largest in comparison with those of other salts, occupied 80.75 % of the total crystallization area.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
W. Wu, S. Lv, X. Liu, H. Qu, H. Zhang, J. Xu, J. Therm. Anal. Calorim. 118 (2014) 1569 (https://doi.org/10.1007/s10973-014-4085-8)
W. Yang, W. J. Yang, B. Tawiah, Y. Zhang, L. L. Wang, S. E. Zhu, T. B. Y. Chen, A. C. Y. Yuen, B. Yu, Y. F. Liu, Compos. Sci. Technol. 164 (2018) 44 (https://doi.org/10.1016/j.compscitech.2018.05.023)
G. A. Bhat, P. Vishnoi, S. K. Gupta, R. Murugavel, Inorg. Chem. Commun. 59 (2015) 84 (https://doi.org/10.1016/j.inoche.2015.07.006)
P. Noisong, C. Danvirutai, Spectrochim. Acta, A 77 (2010) 890 (https://doi.org/10.1016/j.saa.2010.08.028)
P. Noisong, C. Danvirutai, T. Srithanratana, B. Boonchom, Solid State Sci.1 0 (2008) 1598 (https://doi.org/10.1016/j.solidstatesciences.2008.02.020)
A. Suekkhayad, P. Noisong, C. Danvirutai, J. Therm. Anal. Calorim. 129 (2017) 123 (https://doi.org/10.1007/s10973-017-6156-0)
Y. Zeng, J. Yi, H. Wang, G. Zhou, S. Liu, J. Mol. Struct.THEOCHEM 724 (2005) 81 (https://doi.org/10.1016/j.theochem.2005.03.014)
V. Alisoğlu, C.R. Chim. 5 (2002) 547 (https://doi.org/10.1016/S1631-0748(02)01411-X)
V. Alisoglu, H. Necefoglu,C.R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron. 324 (1997) 139 (https://doi.org/10.1016/S1251-8069(99)80017-7)
V. Alisoğlu, C.R. Chim. 8 (2005) 1684 (https://doi.org/10.1016/j.crci.2004.11.041)
V. Alisoglu, C.R. Acad. Sci., Ser. IIc: Chim. 1 (1998) 781 (https://doi.org/10.1016/S1251-8069(99)80046-2)
V. Alisoglu, V. Adiguzel, C.R. Chim. 11 (2008) 938 (https://doi.org/10.1016/j.crci.2007.12.001)
H. Erge, V. Adiguzel, V. Alisoglu, Fluid Phase Equilib. 344 (2013) 13 (https://doi.org/10.1016/j.fluid.2012.12.033)
V. Adiguzel, H. Erge, V. Alisoglu, H. Necefoglu, J. Chem. Thermodyn. 75 (2014) 35 (https://doi.org/10.1016/j.jct.2014.04.014)
S. Demirci, V. Adıgüzel, Ö. Şahi̇n, J. Chem. Eng. Data 61 (2016) 2292 (https://doi.org/10.1021/acs.jced.5b00988)
Y. Mastai, Advances in Crystallization Processes, InTech, Rijeka, 2012, pp. 400–413 (https://doi.org/10.5772/2672)
H. Civelekoğlu, R. Tolun, N. Bulutçu, İnorganik teknolojiler, İTÜ Maden Fakültesi Ofset Atölyesi, İstanbul, 1987, pp. 80–103 (http://www.ituyayinlari.com.tr/kitapdetay.asp?KitapID=34&inorganik-Teknolojiler)
L. Tan, J. Wang, H. Zhou, L. Wang, P. Wang, X. Bai, Fluid Phase Equilib. 388 (2015) 66 (https://doi.org/10.1016/j.fluid.2014.12.047)
J. Yin, X. Shi, H. Zhou, J. Tang, Y. Dai, X. Bai, J. Chem. Eng. Data 62 (2017) 744 (https://doi.org/10.1021/acs.jced.6b00813)
S. Gao, X. Shi, J. Yin, Z. Wan, H. Zhou, G. Li, Fluid Phase Equilib. 411 (2016) 7 (https://doi.org/10.1016/j.fluid.2015.11.033)
X. Shi, J. Yin, H. Zhou, X. Gu, Y. Dai, J. Tang, J. Chem. Eng. Data 62 (2017) 1011 (https://doi.org/10.1021/acs.jced.6b00828)
H. Cao, H. Zhou, X. Bai, R. Ma, L. Tan, J. Wang, J. Chem. Thermodyn. 93 (2016) 255 (https://doi.org/10.1016/j.jct.2015.09.006)
H. Schott, J. Chem. Eng. Data 6 (1961) 324 (https://doi.org/10.1021/je00103a002)
J. R. Van Wazer, Phosphorus and its Compounds, Interscience Publishers, New York, 1958, pp. 60–62 (https://doi.org/10.1002/ange.19610731513)
T. Gündüz, Kantitatif analiz laboratuvar kitabı, Gazi Büro Kitabevi, Ankara, 2012, pp. 280–282 (ISBN 9799757313457)
D. R. Lide, CRC handbook of chemistry and physics, CRC Press, Boca Raton, FL, 2012, pp. 468–469 (https://doi.org/10.1080/08893110902764125)
A. R. Kul, H. Erge, İ. Meydan, Yüzüncü Yıl Üniversitesi Fen Bilim. Enstitüsü Derg. 19 (2014) 62 (https://dergipark.org.tr/en/download/article-file/204648).