Synthesis, X-ray structure and DFT calculation of magnetic properties of binuclear Ni(II) complex with tridentate hydrazone-based ligand

Authors

  • Tanja Keškić Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
  • Dušanka Radanović Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
  • Andrej Pevec Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
  • Iztok Turel Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
  • Maja Gruden Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
  • Katarina Andjelkovic Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
  • Dragana Mitić Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
  • Matija Zlatar Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
  • Božidar Čobeljić Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

DOI:

https://doi.org/10.2298/JSC200625038K

Keywords:

Schiff base, azido-bridged, double end-on

Abstract

Binuclear double end-on azido bridged Ni(II) complex (1) with com­position [Ni2L2(μ-1,1-N3)2(N3)2]×6H2O, (L = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-amin) was synthesized and cha­racterized by single-crystal X-ray diffraction method. Ni(II) ions are hexa­coor­dinated with the tridentate heteroaromatic hydrazone-based ligand and three azido ligands (one terminal and two are end-on bridges). DFT calcul­at­ions revealed that coupling between two Ni(II) centers is ferromagnetic in agreement with binuclear Ni(II) complexes with similar structures.

References

J. Ribas, A. Escuer, M. Monfort, R. Vicente, R. Corteś, L. Lezama, T. Rojo, Coord. Chem. Rev. 193–195 (1999) 1027 (https://doi.org/10.1016/S0010-8545(99)00051-X)

E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Am. Chem. Soc. 120 (1998) 11122 (https://pubs.acs.org/doi/abs/10.1021/ja981661n)

A. Escuer, G. Aromí, Eur. J. Inorg. Chem. (2006) 4721 (https://doi.org/10.1002/ejic.200600552)

F.-C. Liu, Y.-F. Zeng, J.-R. Li, X.-H. Bu, H.-J. Zhang, J. Ribas, Inorg. Chem. 44 (2005) 7298 (https://pubs.acs.org/doi/abs/10.1021/ic051030b)

P. Chaudhuri, R. Wagner, S. Khanra, T. Weyhermüller, Dalton Trans. (2006) 4962 (https://doi.org/10.1039/B610308A)

J. Ribas, M. Monfort, C. Diaz, C. Bastos, X. Solans, Inorg. Chem. 33 (1994) 484 (https://doi.org/10.1021/ic00081a015)

M. Č. Romanović, B. R. Čobeljić, A. Pevec, I. Turel, V. Spasojević, A. A. Tsaturyan, I. N. Shcherbakov, K. K. Anđelković, M. Milenković, D. Radanović, M. R. Milenković, Polyhedron 128 (2017) 30 (https://doi.org/10.1016/j.poly.2017.02.039)

S. Sarkar, A. Mondal, M.S. El Fallah, J. Ribas, D. Chopra, H. Stoeckli-Evans, K.K. Rajak, Polyhedron 25 (2006) 25 (https://doi.org/10.1016/j.poly.2005.06.059)

H.-D. Bian, W. Gu, Q. Yu, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, P. Cheng, Polyhedron 24 (2005) 2002 (https://doi.org/10.1016/j.poly.2005.06.011)

S. Liang, Z. Liu, N. Liu, C. Liu, X. Di, J. Zhang, J. Coord. Chem. 63 (2010) 3441 (https://doi.org/10.1080/00958972.2010.512386)

S.S. Massoud, F.R. Louka, Y.K. Obaid, R. Vicente, J. Ribas, R.C. Fischer, F.A. Mautner, Dalton Trans. 42 (2013) 3968 (https://pubs.rsc.org/en/content/articlelanding/2013/dt/c2dt32540c)

R. Cortés, J.I. Ruiz de Larramendi, L. Lezama, T. Rojo, K. Urtiaga, M.I. Arriortua, J. Chem. Soc. Dalton Trans. (1992) 2723 (https://doi.org/10.1039/DT9920002723)

M.G. Barandika, R. Cortés, L. Lezama, M.K. Urtiaga, M.I. Arriortua, T. Rojo, J. Chem. Soc., Dalton Trans. (1999) 2971 (https://doi.org/10.1039/A903558C)

A. Escuer, R. Vicente, J. Ribas, X. Solans, Inorg. Chem. 34 (1995) 1793 (https://doi.org/10.1021/ic00111a029)

A. Solanki, M. Monfort, S.B. Kumar, J. Mol. Struct. 1050 (2013) 197 (https://doi.org/10.1016/j.molstruc.2013.07.036)

S. Nandi, D. Bannerjee, J.-S. Wu, T.-H. Lu, A.M.Z. Slawin, J.D. Woollins, J. Ribas, C. Sinha, Eur. J. Inorg. Chem. (2009) 3972 (https://doi.org/10.1002/ejic.200900423)

A. R. Jeong, J. W. Shin, J. H. Jeong, K. H. Bok, C. Kim, D. Jeong, J. Cho, S. Hayami, K. S. Min, Chem. Eur. J. 23 (2017) 3023 (https://doi.org/10.1002/chem.201604498)

A. R. Jeong, J. Choi, Y. Komatsumaru, S. Hayami, K. S. Min, Inorg. Chem. Commun. 86 (2017) 66 (https://doi.org/10.1016/j.inoche.2017.09.023)

S. Deoghoria, S. Sain, M. Soler, W.T. Wong, G. Christou, S.K. Bera, S.K. Chandra, Polyhedron 22 (2003) 257 (https://doi.org/10.1016/S0277-5387(02)01336-0)

S. Sain, S. Bid, A. Usman, H.-K. Fun, G. Aromí, X. Solans, S.K. Chandra, Inorg. Chim. Acta 358 (2005) 3362 (https://doi.org/10.1016/j.ica.2005.05.011)

A. N. Georgopoulou, C. R. Raptopoulou, V. Psycharis, R. Ballesteros, B. Abarca, A. K. Boudlais, Inorg. Chem. 48 (2009) 3167 (https://doi.org/10.1021/ic900115c)

H.-Z. Kou, S. Hishiya, O. Sato, Inorg. Chim. Acta 361 (2008) 2396 (https://doi.org/10.1016/j.ica.2007.12.018)

Oxford Diffraction, CrysAlis PRO Software system, Oxford Diffraction Ltd., Yarnton, 2009

A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343 (https://doi.org/10.1107/S0021889892010331)

G. M. Sheldrick, Acta Crystallogr., A 64 (2008) 112–122 (https://doi.org/10.1107/S0108767307043930)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (https://doi.org/10.1002/wcms.81)

G. Jonkers, C. A. de Lange, L. Noodleman, E. J. Baerends, Mol. Phys. 46 (1982) 609 (https://doi.org/10.1080/00268978200101431)

L. Noodleman, J. Chem. Phys. 74 (1981) 5737 (https://doi.org/10.1063/1.440939)

L. Noodleman, E. R. Davidson, Chem. Phys. 109 (1986) 131 (https://doi.org/10.1016/0301-0104(86)80192-6)

L. Noodleman, J. G. Norman, J. H. Osborne, A. Aizman, D. A. Case, J. Am. Chem. Soc. 107 (1985) 3418 (https://doi.org/10.1021/ja00298a004)

F. Neese, Coord. Chem. Rev. 253 (2009) 526 (https://doi.org/10.1016/j.ccr.2008.05.014)

T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett. 319 (2000) 223 (https://doi.org/10.1016/S0009-2614(00)00166-4)

C. van Wüllen, J. Chem. Phys. 109 (1998) 392 (https://doi.org/10.1063/1.476576)

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297 (https://doi.org/10.1039/b508541a)

D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 4 (2008) 908 (https://doi.org/10.1021/ct800047t)

Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 (https://doi.org/10.1063/1.2370993)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

L. Goerigk, S. Grimme, J. Chem. Theory Comput. 7 (2010) 291 (https://doi.org/10.1021/ct100466k)

S. Grimme, J. Chem. Phys. 124 (2006) 034108 (https://doi.org/10.1063/1.2148954)

F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98 (https://doi.org/10.1016/j.chemphys.2008.10.036)

F. Neese, J. Chem. Phys. 115 (2001) 11080 (https://doi.org/10.1063/1.1419058)

D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 5 (2009) 2229 (https://doi.org/10.1021/ct900090f)

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057 (https://doi.org/10.1039/b515623h)

A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587 (https://doi.org/10.1007/s00214-007-0250-5)

A. D. Becke, Phys. Rev. A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)

J. P. Perdew, Phys. Rev. B 33 (1986) 8822 (https://doi.org/10.1103/PhysRevB.33.8822)

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456 (https://doi.org/10.1002/jcc.21759)

F. Neese, J. Phys. Chem. Solids 65 (2004) 781 (https://doi.org/10.1016/J.JPCS.2003.11.015)

F. Neese, E. I. Solomon, Inorg. Chem. 37 (1998) 6568 (https://doi.org/10.1021/ic980948i)

F. Neese, J. Chem. Phys. 127 (2007) 164112 (https://doi.org/10.1063/1.2772857)

S. Sinnecker, F. Neese, J. Phys. Chem., A 110 (2006) 12267 (https://doi.org/10.1021/jp0643303)

M. Atanasov, C. A. A. Daul, C. Rauzy, Chem. Phys. Lett. 367 (2003) 737 (https://doi.org/10.1016/S0009-2614(02)01762-1)

M. Atanasov, C. A. Daul, C. Rauzy, in Optical Spectra and Chemical Bonding in Inorganic Compounds, D. M. P. Mingos, T. Schönherr (Eds.), Springer, Berlin, 2004, pp. 97–125 (https://doi.org/10.1007/b11308)

D. Darmanović, I. N. Shcherbakov, C. Duboc, V. Spasojević, D. Hanžel, K. Anđelković, D. Radanović, I. Turel, M. Milenković, M. Gruden, B. Čobeljić, M. Zlatar, J. Phys. Chem., C 123 (2019) 31142 (https://doi.org/10.1021/acs.jpcc.9b08066)

G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931 (https://doi.org/10.1002/jcc.1056)

C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 99 (1998) 391 (https://doi.org/10.1007/s002140050353)

ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, https://www.scm.com

D. A. Pantazis, V. Krewald, M. Orio, F. Neese, Dalt. Trans. 39 (2010) 4959 (https://doi.org/10.1039/c001286f)

F. El-Khatib, B. Cahier, F. Shao, M. López-Jordà, R. Guillot, E. Rivière, H. Hafez, Z. Saad, J. J. Girerd, N. Guihéry, T. Mallah, Inorg. Chem. 56 (2017) 4601 (https://doi.org/10.1021/acs.inorgchem.7b00205)

I. Nemec, R. Herchel, M. Machata, Z. Trávníček, New J. Chem. 41 (2017) 11258 (https://doi.org/10.1039/c7nj02281f)

M. Zlatar, M. Gruden, O. Vassilyeva, E. Buvaylo, A. Ponomaryov, S. Zvyagin, J. Wosnitza, J. Krzystek, P. García-Fernández, C. Duboc, Inorg. Chem. 55 (2016) 1192 (https://doi.org/10.1021/acs.inorgchem.5b02368)

M. Gruden-Pavlović, M. Perić, M. Zlatar, P. García-Fernández, Chem. Sci. 5 (2014) 1453–1462 (https://doi.org/10.1039/C3SC52984C)

L. Wang, M. Zlatar, F. Vlahović, S. Demeshko, C. Philouze, F. Molton, M. Gennari, F. Meyer, C. Duboc, M. Gruden, Chem. - A Eur. J. 24 (2018) 11973 (https://doi.org/10.1002/chem.201705989)

S. Gómez-Coca, D. Aravena, R. Morales, E. Ruiz, Coord. Chem. Rev. 289–290 (2015) 379 (https://doi.org/10.1016/J.CCR.2015.01.021)

A. K. Bar, C. Pichon, J.-P. Sutter, Coord. Chem. Rev. 308 (2016) 346 (https://doi.org/10.1016/J.CCR.2015.06.013)

M. Pinsky, D. Avnir, 37 (1998) 5575 (https://doi.org/10.1021/IC9804925)

S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 249 (2005) 1693 (https://doi.org/10.1016/J.CCR.2005.03.031).

Published

2020-10-30

How to Cite

[1]
T. Keškić, “Synthesis, X-ray structure and DFT calculation of magnetic properties of binuclear Ni(II) complex with tridentate hydrazone-based ligand”, J. Serb. Chem. Soc., vol. 85, no. 10, pp. 1279–1290, Oct. 2020.

Issue

Section

Inorganic Chemistry

Most read articles by the same author(s)