Synthesis of BaTi5O11 by an aqueous co-precipitation method via a stable organic titanate precursor Scientific paper
Main Article Content
Abstract
BaTi5O11 has been widely researched due to its unique microwave properties. Conventionally, it is challenging to obtain this compound as a single phase. The BaTi5O11 was synthesized via a co-precipitation technique using an aqueous solution of titanium(IV)(triethanolaminato) isopropoxide, barium nitrate and ammonia as precursors, which are stable in aqueous media. The phase evolution, purity, and structure were identified by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy analysis. The desired BaTi5O11 structure was obtained by calcination at 900 °C. Furthermore, the structure was characterized by TGA, FT-IR and Raman studies. The study showed that the particles were between 80 and 120 nm in size and the average crystallite size was determined from the Scherrer formula as 68.1 nm at 900 °C.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
J. Guo, D. Zhou, H. Wang, X. Yao, J. Alloys Compd. 509 (2011) 5863 (https://dx.doi.org/10.1016/j.jallcom.2011.02.155)
Y. Z. Hao, H. Yang, G. H. Chen, Q. L. Zhang, J. Alloys Compd. 552 (2013) 173 (https://doi.org/10.1016/j.jallcom.2012.10.110)
L. Ren, X. Luo, H. Zhou, J. Am. Ceram. Soc. 101 (2018) 3874 (https://dx.doi.org/10.1111/jace.15694)
C. M. Álvarez-Docio, J. J. Reinosa, G. Canu, M. T. Buscaglia, V. Buscaglia, J. F. Fernández, Inorg. Chem. 58 (2019) 8120 (https://dx.doi.org/10.1021/acs.inorgchem.9b00865)
Y. Higuchi, H. Tamura, J. Eur. Ceram. Soc. 23 (2003) 2683 (https://dx.doi.org/10.1016/S0955-2219(03)00193-6)
S. Tangjuank, T. Tunkasiri, Mater. Sci. Eng., B 108 (2004) 223 (https://dx.doi.org/10.1016/j.mseb.2003.11.022)
C. H. Hsu, W. S. Chen, H. H. Tung, P. C. Yang, J. Sen Lin, Adv. Mater. Res. 677 (2013) 153 (https://dx.doi.org/10.4028/www.scientific.net/AMR.677.153)
H. Zhou, H. Wang, Y. Chen, K. Li, X. Yao, J. Am. Ceram. Soc. 91 (2008) 3444 (https://dx.doi.org/10.1111/j.1551-2916.2008.02623.x)
Y. Chen, E. Li, S. Duan, S. Zhang, ACS Sustain. Chem. Eng. 5 (2017) 10606 (https://dx.doi.org/10.1021/acssuschemeng.7b02589)
V. E. Tillmanns, Acta Cryst. B25 (1969) 1444 (https://dx.doi.org/10.1107/s0567740869004195)
H. M. OBryan, JR., J. Thomson, JR, J. Am. Ceram. Soc. 58 (1974) 454 (https://dx.doi.org/10.1111/j.1151-2916.1975.tb19022.x)
T. Fukui, C. Sakurai, M. Okuyama, J. Mater. Res. 7 (1992) 192 (https://link.springer.com/article/10.1557/JMR.1992.0192#citeas)
S. Li, X. Li, K. Zou, Z. Huang, L. Zhang, X. Zhou, D. Guo, Y. Ju, Mater. Lett. 245 (2019) 215 (https://dx.doi.org/10.1016/j.matlet.2019.02.122)
L. Liu, X. Li, K. Zou, Z. Huang, C. Wang, L. Zhang, D. Guo, Y. Ju, J. Mater. Sci. Mater. Electron. 31 (2020) 6883 (https://dx.doi.org/10.1007/s10854-020-03250-9)
K. Zou, L. Liu, X. Li, S. Li, Z. Huang, L. Zhang, D. Guo, Y. Ju, Mater. Lett. 255 (2019) 126584 (https://dx.doi.org/10.1016/j.matlet.2019.126584)
H. Lu, L. E. Burkhart, G. L. Schrader, J. Am. Ceram. Soc. 74 (1991) 968 (https://dx.doi.org/10.1111/j.1151-2916.1991.tb04329.x)
J. J. Ritter, R. S. Roth, J. E. Blendell, J. Am. Ceram. Soc. 62 (1986) 155 (https://doi.org/10.1111/j.1151-2916.1986.tb04721.x)
S. Tangjuank, L. D. Yu, T. Tunkasiri, Smart Mater. Struct. 12 (2003) 656 (https://doi.org/10.1088/0964-1726/12/4/317)
Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Bonn, Germany, http://www.crystalimpact.com/match
J. Rodríguez-Carvajal, Phys., B 192 (1993) 55 (https://dx.doi.org/10.1016/0921-4526(93)90108-I)
K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (2008) 653 (https://dx.doi.org/10.1107/S0021889808012016)
F. Menges, Spectragryph - optical spectroscopy software, version 1.2.13, 2019 (http://www.effemm2.de/spectragryph)
L. Kong, I. Karatchevtseva, M. Blackford, I. Chironi, G. Triani, J. Am. Ceram. Soc. 95 (2012) 816 (https://dx.doi.org/10.1111/j.1551-2916.2011.05002.x)
J. Javadpour, N. G. Eror, J. Am. Ceram. Soc. 71 (1988) 206 (https://dx.doi.org/10.1111/j.1151-2916.1988.tb05849.x)
Y. Song, F. Wang, Z. Jiang, Y. Zhou, J. Mater. Sci. Lett. 18 (1999) 177 (https://dx.doi.org/10.1023/A:1006699409996)
J. Choy, Y. Han, J. Kim, Y. Kim, J. Mater. Chem. 5 (1995) 57 (https://dx.doi.org/10.1039/JM9950500057).