Synthesis of BaTi5O11 by an aqueous co-precipitation method via a stable organic titanate precursor Scientific paper

Main Article Content

Pelin Sözen Aktaş 
https://orcid.org/0000-0003-2140-2650

Abstract

BaTi5O11 has been widely researched due to its unique microwave pro­perties. Conventionally, it is challenging to obtain this compound as a single phase. The BaTi5O11 was synthesized via a co-precipitation technique using an aqueous solution of titanium(IV)(triethanolaminato) isopropoxide, barium nitrate and ammonia as precursors, which are stable in aqueous media. The phase evol­ution, purity, and structure were identified by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy analysis. The desired BaTi5O11 structure was obtained by calcination at 900 °C. Furthermore, the structure was characterized by TGA, FT-IR and Raman studies. The study showed that the particles were between 80 and 120 nm in size and the average crystallite size was determined from the Scherrer formula as 68.1 nm at 900 °C.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
P. Sözen Aktaş , “Synthesis of BaTi5O11 by an aqueous co-precipitation method via a stable organic titanate precursor: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 4, pp. 415–427, Apr. 2021.
Section
Materials

References

J. Guo, D. Zhou, H. Wang, X. Yao, J. Alloys Compd. 509 (2011) 5863 (https://dx.doi.org/10.1016/j.jallcom.2011.02.155)

Y. Z. Hao, H. Yang, G. H. Chen, Q. L. Zhang, J. Alloys Compd. 552 (2013) 173 (https://doi.org/10.1016/j.jallcom.2012.10.110)

L. Ren, X. Luo, H. Zhou, J. Am. Ceram. Soc. 101 (2018) 3874 (https://dx.doi.org/10.1111/jace.15694)

C. M. Álvarez-Docio, J. J. Reinosa, G. Canu, M. T. Buscaglia, V. Buscaglia, J. F. Fernández, Inorg. Chem. 58 (2019) 8120 (https://dx.doi.org/10.1021/acs.inorgchem.9b00865)

Y. Higuchi, H. Tamura, J. Eur. Ceram. Soc. 23 (2003) 2683 (https://dx.doi.org/10.1016/S0955-2219(03)00193-6)

S. Tangjuank, T. Tunkasiri, Mater. Sci. Eng., B 108 (2004) 223 (https://dx.doi.org/10.1016/j.mseb.2003.11.022)

C. H. Hsu, W. S. Chen, H. H. Tung, P. C. Yang, J. Sen Lin, Adv. Mater. Res. 677 (2013) 153 (https://dx.doi.org/10.4028/www.scientific.net/AMR.677.153)

H. Zhou, H. Wang, Y. Chen, K. Li, X. Yao, J. Am. Ceram. Soc. 91 (2008) 3444 (https://dx.doi.org/10.1111/j.1551-2916.2008.02623.x)

Y. Chen, E. Li, S. Duan, S. Zhang, ACS Sustain. Chem. Eng. 5 (2017) 10606 (https://dx.doi.org/10.1021/acssuschemeng.7b02589)

V. E. Tillmanns, Acta Cryst. B25 (1969) 1444 (https://dx.doi.org/10.1107/s0567740869004195)

H. M. OBryan, JR., J. Thomson, JR, J. Am. Ceram. Soc. 58 (1974) 454 (https://dx.doi.org/10.1111/j.1151-2916.1975.tb19022.x)

T. Fukui, C. Sakurai, M. Okuyama, J. Mater. Res. 7 (1992) 192 (https://link.springer.com/article/10.1557/JMR.1992.0192#citeas)

S. Li, X. Li, K. Zou, Z. Huang, L. Zhang, X. Zhou, D. Guo, Y. Ju, Mater. Lett. 245 (2019) 215 (https://dx.doi.org/10.1016/j.matlet.2019.02.122)

L. Liu, X. Li, K. Zou, Z. Huang, C. Wang, L. Zhang, D. Guo, Y. Ju, J. Mater. Sci. Mater. Electron. 31 (2020) 6883 (https://dx.doi.org/10.1007/s10854-020-03250-9)

K. Zou, L. Liu, X. Li, S. Li, Z. Huang, L. Zhang, D. Guo, Y. Ju, Mater. Lett. 255 (2019) 126584 (https://dx.doi.org/10.1016/j.matlet.2019.126584)

H. Lu, L. E. Burkhart, G. L. Schrader, J. Am. Ceram. Soc. 74 (1991) 968 (https://dx.doi.org/10.1111/j.1151-2916.1991.tb04329.x)

J. J. Ritter, R. S. Roth, J. E. Blendell, J. Am. Ceram. Soc. 62 (1986) 155 (https://doi.org/10.1111/j.1151-2916.1986.tb04721.x)

S. Tangjuank, L. D. Yu, T. Tunkasiri, Smart Mater. Struct. 12 (2003) 656 (https://doi.org/10.1088/0964-1726/12/4/317)

Match! - Phase Identification from Powder Diffraction, Crystal Impact - Dr. H. Putz & Dr. K. Brandenburg GbR, Bonn, Germany, http://www.crystalimpact.com/match

J. Rodríguez-Carvajal, Phys., B 192 (1993) 55 (https://dx.doi.org/10.1016/0921-4526(93)90108-I)

K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (2008) 653 (https://dx.doi.org/10.1107/S0021889808012016)

F. Menges, Spectragryph - optical spectroscopy software, version 1.2.13, 2019 (http://www.effemm2.de/spectragryph)

L. Kong, I. Karatchevtseva, M. Blackford, I. Chironi, G. Triani, J. Am. Ceram. Soc. 95 (2012) 816 (https://dx.doi.org/10.1111/j.1551-2916.2011.05002.x)

J. Javadpour, N. G. Eror, J. Am. Ceram. Soc. 71 (1988) 206 (https://dx.doi.org/10.1111/j.1151-2916.1988.tb05849.x)

Y. Song, F. Wang, Z. Jiang, Y. Zhou, J. Mater. Sci. Lett. 18 (1999) 177 (https://dx.doi.org/10.1023/A:1006699409996)

J. Choy, Y. Han, J. Kim, Y. Kim, J. Mater. Chem. 5 (1995) 57 (https://dx.doi.org/10.1039/JM9950500057).