Electrochemical oxidation of 2,4,6-trichlorophenol on iron-doped nanozirconia ceramic

Authors

  • Nadica Abazović Vinča Institute of Nuclear Sciencеs – National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia https://orcid.org/0000-0003-0718-5186
  • Tatjana Savić Vinča Institute of Nuclear Sciencеs – National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia https://orcid.org/0000-0002-5107-9500
  • Tatjana Novaković University of Belgrade – Institute оf Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Republic of Serbia https://orcid.org/0000-0002-6407-9833
  • Mirjana Čomor Vinča Institute of Nuclear Sciencеs – National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia https://orcid.org/0000-0002-7222-4500
  • Zorica Mojović University of Belgrade – Institute оf Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Republic of Serbia https://orcid.org/0000-0003-4804-0776

DOI:

https://doi.org/10.2298/JSC200804078A

Keywords:

ZrO2, modified electrode, phenols

Abstract

Solvothermaly synthesized zirconium oxide nanopowders, pure and doped with various amounts of iron ions (1 – 20 %), were used as modifiers of glassy carbon electrode. The modified electrodes were tested in the reaction of electrochemical oxidation of 2,4,6-trichlorophenol (TCP) in order to investigate the influence of doping on electrochemical performance of zirconia matrix. The techniques of cyclic voltammetry and electrochemical impedance spectroscopy were employed. Cyclic voltammetry showed that electrooxidation of TCP proceeded through oxidation of hydroxyl group. Possible pathway included formation of quinones and formation of polyphenol film on the electrode surface leading to the electrode fouling. Iron doping enhanced the activity of zirconia matrix towards TCP electrooxidation. Electrochemical impedance spectroscopy showed the importance of iron content in zirconia matrix for preferable pathway of TCP electrooxidation. Quinone formation pathway was favored by low iron doped zirconia (doped with 1% of iron), while polyphenol film formation on the electrode surface was more pronounced at samples with higher iron ion content (for doping with 10 and 20 % of iron). The sample with 5 % of added iron ions, showed intermediate behavior where formed polyphenol film showed slight degradation.

References

C. Terashima, T. N. Rao, D. A. Tryk, A. Fujishima, Anal. Chem. 74 (2002) 895 (https://doi.org/10.1021/ac010681w)

M. Saraji, M. Ghani, J. Chromatogr. A 1418 (2015) 45 (https://doi.org/10.1016/j.chroma.2015.09.062)

S. Almeda, L. Nozal, L. Arce, M. Valcárcel, Anal. Chim. Acta 587 (2007) 97 (https://doi.org/10.1016/j.aca.2007.01.035)

Y. Higashi, Y. Fujii, J. Liq. Chromatogr. Related. Technol. 32 (2009) 2372 (https://doi.org/10.1080/10826070903188013)

A. J. Barik, P. R. Gogate, Ultrason. Sonochem. 40 (2018) 383 (https://doi.org/10.1016/j.ultsonch.2017.07.029)

C. Tai, G. Jiang, Chemosphere 59 (2005) 321 (https://doi.org/10.1016/j.chemosphere.2004.10.024)

J. Xiong, C. Hang, J. Gao, Y. Guo, C. Gu, Chem. Eng. J. 254 (2014) 276 (https://doi.org/10.1016/j.cej.2014.05.139)

L. Wang, D. Kong, Y. Ji, J. Lu, X. Yin, Q. Zhou, Chem. Eng. J. 343 (2018) 235 (https://doi.org/10.1016/j.cej.2018.03.006)

M. Shabani-Nooshabadi M, Roostaee, F. Tahernejad-Javazmi, J. Mol. Liq. 219 (2016) 142 (https://doi.org/10.1016/j.molliq.2016.01.081)

S. Hashemnia, Sh. Khayatzadeh, M. Hashemnia, J. Solid. State. Electrochem. 16 (2012) 473 (https://doi.org/10.1007/s10008-011-1355-2)

C. Comninellis, A. Nerini, J. Appl. Electrochem. 25 (1995) 23 (https://doi.org/10.1007/BF00251260)

Z. Sun, X. Ma, X. Hu, Environ. Sci. Pollut. Res. 24 (2017) 14355 (https://doi.org/10.1007/s11356-017-9004-7)

Y. Yao, L. Jiao, N. Yu, J. Zhu, X. Chen, Russ. J. Electrochem. 52 (2016) 348 (https://doi.org/10.1134/S1023193516040157)

M. S. Ureta-Zañartu, P. Bustos, M. C. Diez, M. L. Mora, C. Gutiérrez, Electrochim. Acta 46 (2001) 2545 (https://doi.org/10.1016/S0013-4686(01)00448-0)

F. Fernández, C. Berríos, E. Garrido-Ramírez, N. Escalona, C. Gutiérrez, M. S. Ureta-Zañartu, J. Appl. Electrochem. 44 (2014) 1295 (https://doi.org/10.1007/s10800-014-0763-2)

C. Berríos, J. F. Marco, C. Gutiérrez, M. S. Ureta-Zañartu, Electrochim. Acta 54 (2009) 6417 (https://doi.org/10.1016/j.electacta.2009.06.017)

C. Berríos, R. Arce, M. C. Rezende, M. S. Ureta-Zañartu, C. Gutiérrez, Electrochim. Acta 53 (2008) 2768 (https://doi.org/10.1016/j.electacta.2007.10.053)

M. S. Ureta-Zañartu, M. L. Mora, M. C. Diez, C. Berríos, J. Ojeda, C. Gutiérrez, J. Appl. Electrochem. 32 (2002) 1211 (https://doi.org/10.1023/A:1021680420834)

M. S. Ureta-Zañartu, C. Berríos, J. Pavez, J. Zagal, C. Gutiérrez, J. F. Marco, J. Electroanal. Chem. 553 (2003)147 (https://doi.org/10.1016/S0022-0728(03)00309-7)

M. S. Ureta-Zañartu, P. Bustos, C. Berríos, M. C. Diez, M. L. Mora, C. Gutiérrez, Electrochim. Acta 47 (2002) 2399 (https://doi.org/10.1016/S0013-4686(02)00043-9)

W. Xia, F. Wang, X. Mu, K. Chen, Reac. Kinet. Mech. Cat. 122 (2017) 463 (https://doi.org/10.1007/s11144-017-1193-z)

Y. Wang, X. Yang, Y. Chen, S. Nie, M. Xie, Reac. Kinet. Mech. Cat. 122 (2017) 915 (https://doi.org/10.1007/s11144-017-1243-6)

M. V. Carević, N. D. Abazović, T. D. Savić, T. B. Novaković, D. J. Pjević, M. I. Čomor, J. Am. Ceram. Soc. 101 (2018) 1420 (https://doi.org/10.1111/jace.15324)

K. C. Soni, S. C. Shekar, B. Singh, T. Gopi, J. Colloid. Interface. Sci. 446 (2015) 226 (https://doi.org/10.1016/j.jcis.2015.01.031)

M. V. Carević, T. D. Savić, N. D. Abazović, M. D. Mojović, T. B. Novaković, M. I. Čomor, Ceram. Int. 46 (2020) 6820 (https://doi.org/10.1016/j.ceramint.2019.11.175)

A. Doménech-Carbó, G. Herrera, N. Montoya, P. Pardo, J. Alarcón, M. T. Doménech-Carbó, M. Silva, J. Electrochem. Soc. 161 (2014) H539 (https://doi.org/10.1149/2.0751409jes)

G. Herrera, N. Montoya, A. Domenech, J. Alarcón, Phys. Chem. Chem. Phys. 15 (2013) 19312 (https://doi.org/10.1039/C3CP53216J)

A. Doménech-Carbó, M. T. Doménech-Carbó, J. V. Gimeno-Adelantado, F. Bosch-Reig, M. C. Saurí-Peris, S. Sánchez-Ramosa, Analyst 126 (2001) 1764 (https://doi.org/10.1039/B100257K)

K. W. Cho, V. S. Rao, H.S. Kwon, Electrochim. Acta 52 (2007) 4449 (https://doi.org/10.1016/j.electacta.2006.12.032)

H. Al-Maznai, B. E. Conway, Auto-inhibition effects in anodic oxidation of phenols for electrochemical waste-water purification, J. Serb. Chem. Soc. 66 (2001) 765 (https://doi.org/10.2298/JSC0112765A)

Z. Ežerskis, Z. Jusys, J. Appl. Electrochem. 31 (2001) 1117 (https://doi.org/10.1023/A:1012280216273).

Downloads

Published

2020-12-01

How to Cite

[1]
N. Abazović, T. Savić, T. Novaković, M. Čomor, and Z. Mojović, “Electrochemical oxidation of 2,4,6-trichlorophenol on iron-doped nanozirconia ceramic”, J. Serb. Chem. Soc., vol. 85, no. 5, p. -, Dec. 2020.

Issue

Section

Electrochemistry