Characterization of microcrystalline cellulose extracted from walnut and apricots shells by alkaline treatment Scientific paper
Main Article Content
Abstract
In this study, microcrystalline cellulose (MCC) was isolated from walnut and apricot shells (WS and AS) as agricultural wastes in order to use it as reinforcement in polymer composites. The microcrystalline cellulose was extracted by alkaline treatment and bleached by peroxide as an environmentally friendly treatment, called walnut cellulose (WC) and apricot cellulose (AC). The chemical composition of the samples was set according to the Technical Association of Pulp and Paper Industry (TAPP). After treatments, the alpha-cellulose content increased by about 23 % for the two used cellulose sources. The structural and morphological properties of the samples were investigated by Fourier transform infrared spectroscopy in the attenuated total reflectance mode (ATR-FTIR), optical microscopy (OM), X‑ray diffraction and scanning electron microscopy (SEM). The crystallinity index values evaluated for WC and AC via X-ray diffraction were 86.4 and 80.3 %, respectively. The alkaline soluble fractions of walnut (ASW) and apricot (ASA) shells were recovered and characterized by OM and ATR-FTIR spectroscopy. Furthermore, their chemical composition was analyzed. The characterization and the properties of the WC and AC were similar to those of commercial MCC and MCC prepared in the literature from wood and some agricultural wastes.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
N. Saba, A. Safwan, M. L. Sanyang, F. Mohammad, M. Pervaiz, M. Jawaid, O. Y. Alothman, M. Sain, Int. J. Biol. Macromol. 102 (2017) 822 (https://doi.org/10.1016/j.ijbiomac.2017.04.074)
K. G. Satyanarayana, G. G. C. Arizaga, F. Wypych, Prog. Polym. Sci. 34 (2009) 982 (https://doi.org/10.1016/j.progpolymsci.2008.12.002)
M. El Achabya, Z. Kassaba, A. Barakatc, A. Aboulkasd, Ind. Crops Prod. 112 (2018) 499 (https://doi.org/10.1016/j.indcrop.2017.12.049)
L. Ugarte, A. Santamaria-Echart, S. Mastel, M. Autore, R. Hillenbrand, M. A. Corcuera, A. Eceiza, Ind. Crops Prod. 95 (2017) 564 (http://dx.doi.org/10.1016/j.indcrop.2016.11.011)
S. S. Nair, P.-Y. Kuo, H. Chen, N. Yan, Ind. Crops Prod. 100 (2017) 208 (http://dx.doi.org/10.1016/j.indcrop.2017.02.032)
W. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang, P. Chen, Cellulose 18 (2011) 433 (http://dx.doi.org/10.1007/s10570-011-9497-z)
N. Maaloul, R. B. Arfi, M. Rendueles, A. Ghorbal, M. Diaz, J. Mater. Environ. Sci. 8 (2017) 4171 (http://www.jmaterenvironsci.com/Document/vol8/vol8_N11/438-JMES-2556-Maaloul.pdf)
L. A. S. Costa, D. de J. Assis, G. V. P. Gomes, J. B. A. da Silva, A. F. Fonsêca, J. I. Druzian, Mater. Today-Proc. 2 (2015) 287 (https://doi.org/10.1016/j.matpr.2015.04.045)
J. I. Morán. V. A. Alvarez. V. P. Cyras. A. Vázquez, Cellulose 15 (2008) 149 (https://doi.org//10.1007/s10570-007-9145-9)
M. Maache, A. Bezazi, S. Amroune, F. Scarpac, A. Dufresne, Carbohydr. Polym. 171 (2017) 163 (http://dx.doi.org/10.1016/j.carbpol.2017.04.096)
J. P. Reddy, J.-W. Rhim, J. Nat. Fibers 15 (2018) 465 (https://doi.org/10.1080/15440478.2014.945227)
A. F. Tarchoun, D. Trache, T. M., Klapötke, M. Derradji, W. Bessa, Cellulose 26 (2019) 7635 (https://doi.org/10.1007/s10570-019-02672-x)
F. Hemmati, S. M. Jafari, M. Kashaninejad, M. B. Motlagh, Int. J. Biol. Macromol. 120 (2018) 1216 (https://doi.org/10.1016/j.ijbiomac.2018.09.012)
G. Rajeshkumar, V. Hariharan, T. P. Sathishkumar, J. Ind. Text. 46 (2016) 667 (https://doi.org/10.1177/1528083715591581)
Z. Belouadah, A. Ati, M. Rokbi, Carbohydr. Polym. 134 (2015) 429 (http://dx.doi.org/10.1016/j.carbpol.2015.08.024)
P. Senthamaraikannan, M. Kathiresan, Carbohydr. Polym. 186 (2018) 332 (https://doi.org/10.1016/j.carbpol.2018.01.072)
I. M. Fareez, N. A. Ibrahim, W. M. H. W. Yaacob, N. A. M. Razali, A. H. Jasni, F. A. Aziz, Cellulose 25 (2018) 4407 (https://doi.org/10.1007/s10570-018-1878-0)
A. F. Owolabi, M. K. M. Haafiz, Md. S. Hossainc, M. H. Hussind, M. R. N. Fazita, Int. J. Biol. Macromol. 95 (2017) 1228 (http://dx.doi.org/10.1016/j.ijbiomac.2016.11.016)
R. C. Sun, X. F. Sun, J. L. Wen, J Agric. Food Chem. 49 (2001) 5322 (http://dx.doi.org/10.1021/jf010645y)
D. Zheng, Y. Zhang, Y. Guo, J. Yue, Polymers 11 (2019) 1130 (https://doi.org/10.3390/polym11071130)
K. Harini, C. C. Mohan, Int. J. Biol. Macromol. 163 (2020) 1375 (https://doi.org/10.1016/j.ijbiomac.2020.07.239)
R. C. Sun, J. M. Fang, J. Tomkinson, Ind. Crop. Prod. 12 (2000) 71 (https://doi.org/10.1016/S0926-6690(00)00039-X)
S. I. Mussatto, G. J. M. Rocha, I. C. Roberto, Cellulose 15 (2008) 641 (https://doi.org/10.1007/s10570-008-9198-4)
T. Yokoyama, J. F. Kadla, H.-M. Chang, J. Agric. Food Chem. 50 (2002) 1040 (https://doi.org/10.1021/jf011173q)
L. Segal, J. J. Creely, A. E. Martin, C. M. Conrad, Text. Res. J. 29 (1959) 786 (https://doi.org/10.1177/004051755902901003)
F. Bettaieb, R. Khiari, M. L. Hassan, M. N. Belgacem, J. Bras, A. Dufresne, M. F. Mhenni, Ind. Crops Prod. 72 (2015) 175 (https://doi.org/10.1016/j.indcrop.2014.12.038)
R. Ilyas, S. Sapuan, M. Ishak, Carbohydr. Polym. 181 (2018) 1038 (https://doi.org/10.1016/j.carbpol.2017.11.045)
S. Naduparambath, E. Purushothaman, Cellulose 23 (2016) 1803 (https://doi.org/10.1007/s10570-016-0904-3)
J. R. M. dAlmeida, R. C. M. P. Aquino, S. N. Monteiro, Compos., A 37 (2006) 1473 (https://doi.org/10.1016/j.compositesa.2005.03.035)
A. Espert, F. Vilaplana, S. Karlsson, Compos., A 35 (2004) 1267 (https://doi.org/10.1016/j.compositesa.2004.04.004)
J.-H. Chen, J.-G. Liu, Y.-Q. Su, Z.-H. Xu, M.-C. Li, R.-F. Ying, J.-Q. Wu, Carbohydr. Polym. 206 (2019) 616 (https://doi.org/10.1016/j.carbpol.2018.11.024)
L. Bergamonti, M. Potenza, A. Haghighi Poshtiri, A. Lorenzi, A. M. Sanangelantoni, L. Lazzarini, P. P. Lottici, C. Graiff, Carbohydr. Polym. 231 (2020) 115773 (https://doi.org/10.1016/j.carbpol.2019.115773)
B. D. Mistry, A Handbook of Spectroscopic Data Chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy), Oxford Book Co., Jaipur, 2009, p. 42
C. Yadav, A. Saini, P. K. Maji, Carbohydr. Polym. 165 (2017) 276 (http://dx.doi.org/10.1016/j.carbpol.2017.02.049)
B. H. Stuart, Infrared spectroscopy: fundamentals and applications, Wiley, Chichester, 2004, p. 77
F. Niu, M. Li, Q. Huang, X. Zhang, W. Pan, J. Yang, J. Li, Carbohydr. Polym. 165 (2017) 197 (http://dx.doi.org/10.1016/j.carbpol.2017.02.048)
Boukir, S. Fellak, P. Doumenq, Heliyon. 5 (2019) e02477 (http://dx.doi.org/10.1016/j.heliyon.2019.e02477)
A. D. French, Cellulose 21 (2014) 885 (http://dx.doi.org/10.1007/s10570-013-0030-4)
M.-J. Chen, X.-Q. Zhang, A. Matharu, E. Li, R.-M. Melo, C.-F. Liu, Q.-S. Shi, ACS Sustain. Chem. Eng. 5 (2017) 7278 (http://dx.doi.org/10.1021/acssuschemeng.7b01526)
R. Liu, H. Yu, Y. Huang, Cellulose 12 (2005) 25 (http://dx.doi.org/10.1007/s10570-004-0955-8)
K. Singh, T. J. M. Sinha, S. Srivastava, Int. J. Miner. Process. 139 (2015) 51 (http://dx.doi.org/10.1016/j.minpro.2015.04.014)
K. Zhang, Y. Zhang, D. Yan, C. Zhang, S. Nie, Cellulose 25 (2018) 5049 (http://dx.doi.org/10.1007/s10570-018-1928-7)
R. Li, J. Fei, Y. Cai, Y. Li, J. Feng, J. Yao, Carbohydr. Polym. 76 (2009) 94 (http://dx.doi.org/10.1016/j.carbpol.2008.09.034)
A. P. B. Gonçalves, C. S. de Miranda, D. H. Guimarães, J. C. de Oliveira, A. M. F. Cruza, F. L. B. M. da Silva, S. Luporinia, N. M. José, Mater. Res. 18 (2015) 205 (http://dx.doi.org/10.1590/1516-1439.366414)
M. Z. Karim, Z. Z. Chowdhury, S. B. Abd Hamid, M. E. Ali, Materials 7 (2014) 6982 (http://dx.doi.org/10.3390/ma7106982).