Operating parameter optimization of cell surface hydrophobicity test for ureolytic bacteria Scientific paper

Main Article Content

Olja Šovljanski
https://orcid.org/0000-0002-9118-4209
Lato Pezo
https://orcid.org/0000-0002-0704-3084
Ana M. Tomić
https://orcid.org/0000-0002-6338-342X
Aleksandra Ranitović
https://orcid.org/0000-0002-9666-7373
Dragoljub Cvetković
Siniša Markov

Abstract

As one of the main non-covalent relations in microbiological-based systems, cell surface hydrophobicity (CSH) can be observed as a relevant para­meter for biodegradation capability and suggested bacterial behaviour and bio­film formation during a bioremediation process. On the other hand, the role of ureolytic bacteria in bioremediation has subsequently led to the examination of this bacterial type in different engineering fields. In order to optimize the oper­ating parameters of microbial adhesion to hydrocarbons test (MATH) for ureo­lytic bacteria, Box–Behnken experimental design was conducted for five ureo­lytic bacteria isolated from soils, as well as for the reference strain Sporosar­cina pasteurii DSM 33. The optimization was completed with and without the essential substrate for the targeted metabolic reaction, with the aim to compare differences in bacterial hydrophobicity. A vortex time of 2 min, a hydrocarbon volume of 0.5 mL, and a phase separation time of 15 min are recommended as MATH operating parameters for all tested ureolytic bacteria. Although all bac­teria are hydrophobic, lower CSH values in the presence of urea were observed for the same bacterium, which could be explained by the interaction of urea with the organic phase of the separation system, as well as a rapid ureolysis process that also occurs during the application of ureolytic bacteria in biotech­nology systems.

Article Details

How to Cite
[1]
O. Šovljanski, L. Pezo, A. M. Tomić, A. Ranitović, D. Cvetković, and S. Markov, “Operating parameter optimization of cell surface hydrophobicity test for ureolytic bacteria: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 5, pp. 533-545, Jun. 2021.
Section
Environmental Chemistry

References

C. H. Kang, S. J. Oh, Y. Shin, S. H. Han, I. H. Nam, Ecol. Eng. 74 (2016) 402 (https://doi.org/10.1016/j.ecoleng.2014.10.009)

D. Arias, L. A. Cisternas, C. Miranda, M. Rivas, Front. Bioeng. Biotechnol. 6 (2018) 209 (https://doi.org/10.3389/fbioe.2018.00209)

S. Bibi, M. Oualha, M. Y. Ashfa, M. T. Suleiman, N. Zouari, RSC Adv. 8 (2018) 5854 (https://doi.org/10.1039/C7RA12758H)

R. Siddique, R. N. K. Chahal, Constr. Build. Mater. 25 (2011) 3791 (https://doi.org/10.1016/j.conbuildmat.2011.04.010)

H. Min Son, H. Y. Kim, S. M. Park, H. K. Lee, Mater. 11 (2018) 782 (https://doi.org/10.3390/ma11050782)

H. Pang, G. Wang, H. Yang, H. Wu, X. Wang, Y. Chen, IOP Conf. Ser.: Earth Environ. Sci. 252 (2019) 052131 (https://doi.org/10.1088/1755-1315/252/5/052131)

J. M. van der Bergh, B. Miljevic, O. Šovljanski, S. Vučetić, S. Markov, J. Ranogajec, A. Bras, Constr. Buil. Mater. 248 (2020) 118557 (https://doi.org/10.1016/j.conbuildmat.2020.118557)

A. Krasowska, K. Sigler, Front Cell Infect. Microbiol. 4 (2014) 112 (https://doi.org/10.3389/fcimb.2014.00112)

A. Vidaković, Denitrifier PhD Thesis, University of Novi Sad, Novi Sad, 2019 (in Serbian)

C. O. Obuekwe, Z. K. Al-Jadi, E. Al-Saleh, FEMS Microbiol. Lett. 270 (2009) 214 (https://doi.org/10.1111/j.1574-6968.2007.00685.x)

G. Saini, PhD Thesis, Oregon State University, Corvallis, OR, 2010

L. Hall-Stoodley, J. W. Costerton, P. Stoodle, Nat. Rev. Microbiol. 2 (2004) 95 (https://doi.org/10.1038/nrmicro821)

Z. A. Mirani, A. Fatima, S. Urooj, M. Aziz, M. N. Khan, T. Abbas, Iran. J. Basic. Med. Sci. 21(2018) 760 (https://doi.org/10.22038/IJBMS.2018.28525.6917)

C. H. Bolster, S. L. Walker, K. L. Cook, J. Environ. Qual. 35 (2006) 1018 (https://doi.org/10.2134/jeq2005.0224)

P. Tribedi, A. K. Sil, J. App. Microbiol. 116 (2013) 295 (https://doi.org/10.1111/jam.12375)

P. Lather, A. K. Mohanty, P. Jha, A. K. Garsa, Biochem. Res. Intern. 60 (2016) 1091290 https://doi.org/10.1155/2016/1091290

Y. N. Sardessai, S. Bhosle, Biotechnol. Prog. 20 (2008) 655 (https://doi.org/10.1021/bp0200595)

K. Hori, H. Watanabe, S. I. Ishii, Y. Tanji, H. Unno, Appl. Environ. Microbiol. 74 (2008) 2511 (https://doi.org/10.1128/AEM.02229-07)

S. Torres, A. Pandey, G. R. Castro, Biotech. Adv. 29 (2011) 442 (https://doi.org/10.1016/j.biotechadv.2011.04.002)

M. H. Ly, M. Aguedo, S. Goudot, M. L. Le, P. Cayot, J. A. Teixeira, T. M. Le, J. M. Belin, Y. Wache, Food Hydrocolloids 22 (2008) 742 (https://doi.org/10.1016/j.foodhyd.2007.03.001)

F. Gaboriaud, E. Dague, S. Bailet, F. Jorand, J. Duval, F. Thomas, Colloids Surf., B 52 (2006) 108 (https://doi.org/10.1016/j.colsurfb.2006.04.017)

C. O. Obuekwe, Z. K. Al-Jadi, E. S. Al-Saleh, Can. J. Microbiol. 53 (2007) 252 (https://doi.org/10.1111/j.1365-2672.2008.03887.x)

C.R. Bunt, D.S. Jones, I.G. Tucker, I.G., Int. J. Pharm. 113 (1995) 257 (https://doi.org/10.1016/0378-5173(94)00205-J)

B. M. Hsu, C. Huang, Colloids Surf. 201 (2002) 201 (https://doi.org/10.1016/S0927-7757(01)01009-3)

S. L. Walker, J. E. Hill, J. A. Redman, M. Elimelech, Appl. Environ. Microbiol. 71 (2005) 3093 (https://doi.org/10.1128/AEM.71.6.3093-3099.2005)

K. Myszka, K. Czaczyk, Pol. J. Food. Nutr. Sci. 61 (2007) 173 (http://dx.doi.org/10.2478/v10222-011-0018-4)

O. Šovljanski, A. Tomić, L. Pezo, S. Markov, J. Sci. Food Agric. 100 (2020) 1155 (https://doi.org/10.1002/jsfa.10124)

R. L. Prior, X. Wu, K. Shaish, J. Agric. Food Chem. 53 (2005) 4290 (https://doi.org/10.1021/jf0502698)

T. A. Shpiruk, M. Khajehpour, Phys. Chem. Phys. 15 (2013) 213 (https://doi.org/10.1039/C2CP42759A).

Most read articles by the same author(s)