Chemical applicability of Sombor indices Survey

Main Article Content

Izudin Redžepović
https://orcid.org/0000-0003-4956-0407

Abstract

Recently, a novel class of degree-based topological molecular des­criptors was proposed, the so-called Sombor indices. Within this study, the predictive and discriminative potentials of the Sombor index, the reduced Sombor index, and the average Sombor index were examined. All three topo­logical molecular descriptors showed good predictive potential. The statistical data indicate that the reduced Sombor index preforms with a slightly better predictive potential. An external validation confirmed this finding. It was found that these degree-based indices exert modest discriminative potential, when tested on a large group of isomers.

Article Details

How to Cite
[1]
I. Redžepović, “Chemical applicability of Sombor indices : Survey”, J. Serb. Chem. Soc., vol. 86, no. 5, pp. 445-457, Jun. 2021.
Section
Survey

References

X. Ling, J. Bajorath, Comb. Chem. High Throughput Screen. 3 (2000) 363 (https://doi.org/10.2174/1386207003331454)

R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley, Weinheim, 2009 (https://doi.org/10.1002/9783527628766)

H. Hong, Q. Xie, W. Ge, F. Qian, H. Fang, L. Shi, Z. Su, R. Perkins, W. Tong, J. Chem. Inf. Model. 48 (2008) 1337 (https://doi.org/10.1021/ci800038f)

S. Sahoo, C. Adhikari, M. Kuanar, B. K. Mishra, Curr. Comput. Aided Drug Des. 12 (2016) 181 (https://doi.org/10.2174/1573409912666160525112114)

A. R. Katritzky, E. V. Gordeeva, J. Chem. Inf. Comput. Sci. 33 (1993) 835 (https://doi.org/10.1021/ci00016a005)

M. Karelson, Molecular Descriptors in QSAR/QSPR, Interscience, New York, 2000 (ISBN: 978-0-471-35168-9)

M. Dehmer, K. Varmuza, D. Bonchev, Statistical Modelling of Molecular Descriptors in QSAR/QSPR, John Wiley & Sons, Weinheim, 2012 (https://doi.org/10.1002/9783527645121)

K. Roу, S. Kar, R. N. Das, A Primer on QSAR/QSPR Modeling-Fundamental Concepts, Springer, Cham, 2015 (https://doi.org/10.1007/978-3-319-17281-1)

J. Bajorath, J. Chem. Inf. Comput. Sci. 41 (2001) 233 (https://doi.org/10.1021/ci0001482)

F. Grisoni, D. Reker, P. Schneider, L. Friedrich, V. Consonni, R. Todeschini, A. Koeberle, O. Werz, G. Schneider, Mol. Inform. 36 (2017) 1600091 (https://doi.org/10.1002/minf.201600091)

N. Trinajstić, Chemical Graph Theory, Routledge, New York, 2018 (https://doi.org/10.1201/9781315139111)

D. Bonchev, Chemical Graph Theory: Introduction and Fundamentals, CRC Press, Boca Raton, FL, 1991 (ISBN: 978-0856264542)

I. Gutman, Selected Theorems in Chemical Graph Theory, University of Kragujevac, Kragujevac, 2017 (ISBN: 978-86-6009-039-5)

E. Estrada, G. Patlewicz, E. Uriarte, Indian J. Chem., A 42 (2003) 1315 (http://hdl.handle.net/123456789/20663)

R. Zanni, M. Galvez-Llompart, R. Garcia-Domenech, J. Galvez, Expert Opin. Drug Discov. 10 (2015) 945 (https://doi.org/10.1517/17460441.2015.1062751)

O. Ivanciuc, Curr. Comput. Aided Drug Des. 9 (2013) 153 (https://doi.org/10.2174/1573409911309020002)

I. Redžepović, B. Furtula, J. Comput. Aided Mol. Des. 34 (2020) 975 (https://doi.org/10.1007/s10822-020-00320-2)

I. Redžepović, Y. Mao, Z. Wang, B. Furtula, Int. J. Quantum Chem. 120 (2020) e26209 (https://doi.org/10.1002/qua.26209)

I. Redžepović, B. Furtula, J. Serb. Soc. Comput. Mech. Special Issue (2020) 37 (https://doi.org/10.24874/jsscm.2020.01.04)

R. Gozalbes, J. P. Doucet, F. Derouin, Curr. Drug Targets Infect. Disord. 2 (2002) 93 (https://doi.org/10.2174/1568005024605909)

I. Gutman, N. Trinajstić, Chem. Phys. Lett. 17 (1972) 535 (https://doi.org/10.1016/0009-2614(72)85099-1)

S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, Croat. Chem. Acta 76 (2003) 113 (https://hrcak.srce.hr/103086)

I. Gutman, K. C. Das, MATCH Commun. Math. Comput. Chem. 50 (2004) 83 (http://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_83-92.pdf)

M. Eliasi, A. Iranmanesh, I. Gutman, MATCH Commun. Math. Comput. Chem. 68 (2012) 217 (http://match.pmf.kg.ac.rs/electronic_versions/Match68/n1/match68n1_217-230.pdf)

A. Ali, N. Trinajstić, Mol. Inform. 37 (2018) 1800008 (https://doi.org/10.1002/minf.201800008)

Z. Raza, A. Ali, Int. J. Quantum Chem. 120 (2020) e26333 (https://doi.org/10.1002/qua.26333)

T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, MATCH Commun. Math. Comput. Chem. 66 (2011) 613 (http://match.pmf.kg.ac.rs/electronic_versions/Match66/n2/match66n2_613-626.pdf)

I. Gutman, MATCH Commun. Math. Comput. Chem. 86 (2021) 11 (http://match.pmf.kg.ac.rs/content86n1.htm)

M. Randić, J. Math. Chem. 7 (1991) 155 (https://doi.org/10.1007/BF01200821)

www.moleculardecriptors.eu (accessed February 15, 2020)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12 (2011) 2825 (https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf)

E. V. Konstantinova, J. Chem. Inf. Comput. Sci. 36 (1996) 54 (https://doi.org/10.1021/ci9502461)

M. Randić, J. Am. Chem. Soc. 97 (1975) 6609 (https://doi.org/10.1021/ja00856a001)

D. Vukičević, M. Gašperov, Croat. Chem. Acta 83 (2010) 243 (https://hrcak.srce.hr/62202).

Most read articles by the same author(s)