Efficiency of different additives in the improvement of the oxidation stability of fatty acid methyl esters with different properties Scientific paper

Main Article Content

Milica Rankov Šicar
Radoslav Mićić
https://orcid.org/0000-0002-3976-0803
Milan Tomić
https://orcid.org/0000-0003-1797-770X
Nataša Đurišić-Mladenović
https://orcid.org/0000-0002-5203-6051

Abstract

This study evaluates six formulations in improving the oxidation sta­bility of different fatty acid methyl esters (MEs). Two MEs differed in the unsaturation levels as they were synthesized from different feedstock: a blend of soybean and sunflower oils, and waste cooking oil; they did not fulfill the requirements of the EN 14214 standard concerning their oxidation stability (≈0.6 h) and some impurities. The third MEs (SoSuME-EN) were fully com­pliant with the standard. Five formulations were phenolic-based, containing single or mixed antioxidant compounds of different molecular structures; one was amine-based. Different dosages of the formulations were added to the ME samples (corresponding to the addition range 50–48300 ppm). The MEs sta­bility expressed as induction periods, IP, determined by the Rancimat method, were used for the calculation of stabilization factors, SF, indicating the effi­ciency of the applied formulation. The formulation containing 2-(1,1-dimeth­yl­ethyl)-1,4-benzenediol was the most efficient concerning the lowest consump­tion rate and the highest SF achieved for the low quality ME. 2,2′-Methylene-
-bis-(4-methyl-6-tert-butylphenol) was linked with higher antioxidant potency than the amine-based formulation and the phenolic compounds with two bulky tert-butyl groups. Among the 4 selected phenolic additives, butylated hyd­roxy­toluene and 2,2′-methylene-bis-(4-methyl-6-tert-butylphenol) had sim­ilar effi­ciency in SoSuME-EN (at ≈500 ppm they produced SF ≈ 2), while it took twice of this amount for mixed butylphenols to achieve the same effect.

Article Details

How to Cite
[1]
M. Rankov Šicar, R. Mićić, M. Tomić, and N. Đurišić-Mladenović, “Efficiency of different additives in the improvement of the oxidation stability of fatty acid methyl esters with different properties: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 7-8, pp. 739-752, Aug. 2021.
Section
Chemical Engineering

References

M. Tomić, N. Đurišić-Mladenović, R. Mićić, M. Simikić, L. Savin, Fuel 235 (2019) 269 (https://doi.org/10.1016/j.fuel.2018.07.123)

M. J. Ramos, C. M. Fernández, A. Casas, L. Rodríguez, A. Pérez, Bioresour. Technol. 100 (2009) 261 (http://doi.org/10.1016/j.biortech.2008.06.039)

S. Jain, M. P. Sharma, Renew. Sustain. Energy Rev. 14 (2010) 667 (https://doi.org/10.1016/j.rser.2009.10.011)

G. Karavalakis, S. Stournas, Energy Fuels 24 (2010) 3682 (https://doi.org/10.1021/ef1004623)

S. Agarwal, S. Singhal, M. Singh, S. Arora, M. Tanwer, ACS Sustain. Chem. Eng. 6 (2018) 11036 (https://doi.org/10.1021/acssuschemeng.8b02523)

J. Pullen, K. Saeed, Renew. Sustain. Energy Rev. 16 (2012) 5924 (https://doi.org/10.1016/j.rser.2012.06.024)

Z. Yaakob, B. N. Narayanan, S. Padikkaparambil, K. Surya Unni, M. P. Akbar, Renew. Sustain. Energy Rev. 35 (2014) 136 (https://doi.org/10.1016/j.rser.2014.03.055)

R. Kumar Saluja, V. Kumar, R. Sham, Renew. Sustain. Energy Rev. 62 (2016) 866 (https://doi.org/10.1016/j.rser.2016.05.001)

M. M. Rashed, M. A. Kalam, H. H. Masjuki, H. K. Rashedul, A. M. Ashraful, I. Shancita, A. M. Ruhul, RSC Adv. 5 (2015) 36240 (https://doi.org/10.1039/C4RA14977G)

K. Varatharajan, D. S. Pushparani, Renew. Sustain. Energy Rev. 82 (2018) 2017 (https://doi.org/10.1016/j.rser.2017.07.020)

B. Chen, D. McClements, E. Decker, Crit. Rev. Food Sci. Nutr. 51 (2011) 901 (https://doi.org/10.1080/10408398.2011.606379)

W. Liu, G. Lu, G. Yang, Y. Bi, Fuel 242 (2019) 133 (https://doi.org/10.1016/j.fuel.2018.12.132)

G. Knothe, K. R. Steidley, Fuel Process. Technol. 177 (2018) 75 (https://doi.org/10.1016/j.fuproc.2018.04.009)

I. van der Westhuizen, W. W. Focke, Fuel 219 (2018) 126 (https://doi.org/10.1016/j.fuel.2018.01.086)

M. Serrano, M. Martínez, J. Aracil, Fuel Process. Technol. 116 (2013) 135 (https://doi.org/10.1016/j.fuproc.2013.05.011)

W. W. Focke, I. Van Der Westhuizen, A. B. L. Grobler, K. T. Nshoane, J. K. Reddy, A. S. Luyt, Fuel 94 (2012) 227 (https://doi.org/10.1016/j.fuel.2011.11.061)

I. Tasić, M. D. Tomić, A. L. Aleksić, N. Đurišić-Mladenović, F. L. Martinović, R. D. Mićić, Hem. Ind. 73 (2019) 103 (https://doi.org/10.2298/HEMIND190117009T)

M. Lapuerta, J. Rodríguez-Fernández, A. Ramos, B. Álvarez, Fuel 93 (2012) 391 (https://doi.org/10.1016/j.fuel.2011.09.011)

M. Mittelbach, S. Schober, J. Am. Oil Chem. Soc. 80 (2003) 817 (https://doi.org/10.1007/s11746-003-0778-x).

J. Zhou, Y. Xiong, Y. Shi, Energy Fuels 30 (2016) 10534 (https://doi.org/10.1021/acs.energyfuels.6b02199)

K. Ryu, Bioresour. Technol. 101 (2010) S78 (https://doi.org/10.1016/j.biortech.2009.05.034)

Z. Yang, B. P. Hollebone, Z. Wang, C. Yang, M. Landriault, Fuel Process. Technol. 106 (2013) 366 (https://doi.org/10.1016/j.fuproc.2014.05.033)

I. M. Rizwanul Fattah, H. H. Masjuki, M. A. Kalam, M. A. Hazrat, B. M. Masum, S. Imtenan, A. M. Ashraful, Renew. Sustain. Energy Rev. 30 (2014) 356 (https://doi.org/10.1016/j.rser.2013.10.026)

A. Domingos, E. Saad, W. Vechiatto, H. Wilhelm, L. Ramos, J. Braz. Chem. Soc. 18 (2007) 416. (https://doi.org/10.1590/S0103-50532007000200026).