Response surface methodology for the study of interactions between components in the micellar system formulation Scientific paper

Main Article Content

Souhila Omari
https://orcid.org/0000-0003-1859-8285
Mohamed Nedjhioui
https://orcid.org/0000-0001-7886-4317
Nadjia Hamidi
https://orcid.org/0000-0002-8475-9326
Othmane Benkortbi
https://orcid.org/0000-0002-1965-7171
Nabil Bouarra
https://orcid.org/0000-0001-5438-8678

Abstract

This work aims to examine the interaction of certain physicochemical properties on micellar systems constituted of a polymer (sodium alginate), two surfactants (CTAB and tween 80), and Algerian olive oil. Response surface modelling (RSM) was applied to study the combined effects of systems con­taining each type of surfactant. The monitoring of four independent parameters such as the interfacial tension (Y1), the conductivity (Y2), the viscosity (Y3), and the turbidity (Y4) as responses for the experimental design model allowed to de­termine the performance of the models established. Based on statistical analyzes, the coefficients R2 and Q2 for the interfacial tension, the conductivity, the vis­cosity and the turbidity are: 0.998 and 0.805; 0.982 and 0.742; 0.976 and 0.734, and 0.985 and 0.723; respectively. The obtained results indicate that these models showed a good predictive power for an optimal system composed of CTAB, Tween 80, AlgNa, and olive oil. For the CTAB / AlgNa and CTAB / olive oil systems, interfacial tension values of 33.85 and 34.39 mN m-1. Maximum con­ductivity values of 4.126 and 4.064 mScm-1 were also obtained. For viscous compounds consisting of AlgNa / Olive Oil and AlgNa / Tween 80, maximum viscosity values of 202.5 and 196.6 mPa s were obtained. For the same systems as those for viscosity, turbidity values of 300 and 304 NTU were obtained.

Article Details

How to Cite
[1]
S. . Omari, M. . Nedjhioui, N. . Hamidi, O. Benkortbi, and N. . Bouarra, “Response surface methodology for the study of interactions between components in the micellar system formulation : Scientific paper”, J. Serb. Chem. Soc., May 2021.
Section
Chemical Engineering

References

A. Avarnas, I. Panagiotis, J. Colloid. Interface. Sci. 258 (2003) 102 (https://doi.org/10.1016/S0021-9797(02)00129-7)

N. Kamenka, I. Burgaud, C. Treiner, R. Zana, Langmuir 10(1994) 3455 (https://doi.org/10.1021/la00022a016)

L. M. Smitter, J. Guédez, A. J. Müller, J. Colloid. Interface. Sci. 236 (2001) 343 (https://doi.org/10.1006/jcis.2001.7438)

T. Gilanyl, E. Wolfram, Colloids. Surf. 3 (1981) 181 (https://doi.org/10.1016/0166-6622(81)80077-7)

R. Barreiro-Iglesias, C. Alvarez-Lorenzo, A. Concheiro, Int. J. Pharm. 258 (2003) 165 (https://doi: 10.1016/s0378-5173(03)00182-0)

E. Minatti, D. Zanette, Colloids. Surf. A. 113 (1996) 237 (http://dx.doi.org/10.1016/0927-7757(96)03573-X)

T. Casgrove, S. J. Mears, T. Obey, L. Thompson, R. D. Welsey, Colloids. Surf. A 149 (1999) 329 (https://doi.org/10.1016/S0927-7757(98)00301-X)

W. Guo, Y.W. Sun, G.S. Luo, Y.J. Wang, Colloids. Surf. A 252 (2005) 71 (https://doi.org/10.1016/j.colsurfa.2004.10.013)

S. Puvvada, D. Blankschtein, J. Chem. Phys. 92 (1990) 371 (https://doi.org/10.1063/1.457829)

K. Holmberg B. Jönsson , B. Kronberg , B. Lindman, Surfactants and polymers in aqueous solution, second edition, John Wiley & Sons, LTD, New York, 2002 ,ISBN: 0-471-49883-1

A.I. Khuri, J.A. Cornell, Response surfaces, design and analysis, Marcel Dekker Inc., New York,1996, p.536 (ISBN 978-0-367-40125-2)

D. C. Montgomery, Design and analysis of experiments, third ed., John Willey & Sons Inc., New York, 1991, p. 688 (ISBN 978-1-119-49244-3)

K. G. S. Nair, R. Velmurugan, S. K. Sukumaran, Bio. Nano. Sci. 10 (2020) 279 https://doi.org/10.1007/s12668-019-00713-0

J. Goupy, Anal.Chim.Acta. 544 (2005) 184 (https://doi.org/10.1016/j.aca.2005.01.051)

X. Huang, P. Jiang, Adv. Mater, 27 (2005) 546 https://doi.org/10.1002/adma.201401310

W. G. Cochran, G. M. Cox, Experimental designs, 2nd Ed., John Willey & Sons Inc., New York, 1990 p. 335 (ISBN978-0-471-54567-5)

M. Nedjhioui, J. P. Canselier, N. Moulai Mostefa, A. Bensmaili, A. Skender, Desalination 206 (2007) 589 (https://doi.org/10.1016/j.desal.2006.04.065)

M. Nedjhioui, N. Moulai Mostefa, A. Bensmaili, A. Morsli, Desalination 185 (2005) 543 (https://doi.org/10.1016/j.desal.2005.05.013)

M. Nedjhioui, J. P. Canselier, N. Moulai-Mostefa, A. Bensmaili, J. Disper.Sci. Technol. 30 (2009) 1331 (https://doi.org/10.1080/01932690902735538)

M. Nedjhioui, N. Moulai-Mostefa, A. Sellami, F.Toubal, Desalin.Water. Тreat. 56 (2015) 2739 (https://doi.org/10.1080/19443994.2015.1012339)

M. Nedjhioui, N. Moulai-Mostefa, M. Tir, Desalin.Water. Treat.5 5 (2015) 3704 (https://doi.org/10.1080/19443994.2014.940217)

N. Moulai-Mostefa, R. Khalladi, M. Nedjhioui, Ann. Chim. Sci. Mat. 32 (2007) 421 (https://doi: 10.3166/acsm.32.421-429)

A. Dal Bo, B. Schweitzer, A.C. Felippe, D. Zanette, B. Lindman, Colloids. Surf. A. 256 (2005) 171 (https://doi.org/10.1016/j.colsurfa.2005.01.017)

T. D. Blake, Y. D. Shikhmurzaev, J. Colloid. Interface. Sci .253 (2002) 196 (https://doi: 10.1006/jcis.2002.8513)

D. Langevin, Adv. Colloid. Interface. Sci. 89 (2001) 467 (https://doi.org/10.1016/S0001-8686(00)00068-3)

E. D. Goddard, Colloids. Surf. 19 (1986) 255 (https://doi.org/10.1016/0166-6622(86)80340-7)

V. J. Sovilj, L. B. Petrovic, Carbohyd.Polym. 64 (2006) 41 (https://doi.org/10.1016/j.carbpol.2005.10.030)

I. M. Harrison, F. Candau, R. Zana, Colloid. Polym. Sci. 277 1 (1999) 48 (https://doi.org/10.1007/s003960050366)

J. Merta, P. Stenius, E. Pirttinen, J. Disper. Sci. Technol. 20 (1999) 677 (https://doi.org/10.1080/01932699908943814).