Crystal structure of K3EuSi2O7

Authors

  • Sabina Kovač University of Belgrade, Faculty of Mining and Geology, Department of Mineralogy, Crystallography, Petrology and Geochemistry, Laboratory of Crystallography, Đušina 7, Belgrade 11000, Serbia https://orcid.org/0000-0002-7515-2952
  • Predrag Dabić University of Belgrade, Faculty of Mining and Geology, Department of Mineralogy, Crystallography, Petrology and Geochemistry, Laboratory of Crystallography, Đušina 7, Belgrade 11000, Serbia https://orcid.org/0000-0002-1865-4788
  • Aleksandar Kremenović University of Belgrade, Faculty of Mining and Geology, Department of Mineralogy, Crystallography, Petrology and Geochemistry, Laboratory of Crystallography, Đušina 7, Belgrade 11000, Serbia https://orcid.org/0000-0001-8845-2332

DOI:

https://doi.org/10.2298/JSC210218026K

Keywords:

alkali rare-earth silicates, crystal structure, flux synthesis, single-crystal X-ray diffraction

Abstract

As a part of the research of the flux technique for growing alkali rare-earth elements (REE) containing silicates, tripotassium europium disilicate, K3EuSi2O7, has been synthesized and characterized by single-crystal X-ray diffraction. It crystallizes in the space group P63/mcm. In the crystal structure of the title compound, one part of the Eu cations are in a slightly distorted octahedral coordination and the other part are in an ideal trigonal prismatic coordination environment. The disilicate Si2O7 groups connect four EuO6 octahedra and one EuO6 trigonal prism. Three differently coordinated potassium cations are located between them. Silicates containing the larger rare earth elements usually crystallize in a structure that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment.

References

J. Felsche, In The Crystal Chemistry of the Rare-Earth Silicates. Rare Earths. Structure and Bonding, Vol. 13, Heidelberg: Springer, Berlin, Germany, 1973 (https://doi.org/10.1007/3-540-06125-8_3)

A. Kitai, In Luminescent Materials and Applications, John Wiley & Sons Ltd., Chichester, England, 2008 (Online ISBN:9780470985687)

A. M. Latshaw, W. M.Chance, N. Trenor, G. Morrison, M. D. Smith, J. Yeon, D. E. Williams, H.-C. zur Loye, CrystEngComm 17 (2015) 4691 (https://doi.org/10.1039/C5CE00630A)

A. M. Latshaw, K. D. Hughey, M. D. Smith, J. Yeon, H.-C. zur Loye, Inorg. Chem. 54 (2015) 876 (https://doi.org/10.1021/ic502185b)

A. M. Latshaw, B. O. Wilkins, K. D. Hughey, J. Yeon, D. E. Williams, T. T. Tran, P. S. Halasyamani, H.-C. zur Loye, CrystEngComm 17 (2015) 4654 (https://doi.org/10.1039/C5CE00671F)

A. M. Latshaw, G. Morrison, K. D. zur Loye, A. R. Myers, M. D. Smith, H.-C. zur Loye, CrystEngComm 18 (2016) 2294 (https://doi.org/10.1039/C6CE00177G)

A. M. Latshaw, J. Yeon, M. D. Smith, H.-C. zur Loye, J. Solid State Chem. 235 (2016) 100 (https://doi.org/10.1016/j.jssc.2015.12.013)

G. Morrison, A. M. Latshaw, N. R. Spagnuolo, H.-C. Zur Loye, J. Am. Chem. Soc. 139 (2017) 14743 (https://doi.org/10.1021/jacs.7b08559)

B. R. Figueiredo, A. A. Valente, Z. Lin, C. M. Silva, Micropor. Mesopor. Mat. 234 (2016) 73 (https://doi.org/10.1016/j.micromeso.2016.07.004)

F. Liebau, Structural chemistry of silicates: structure, bonding and classification, Heidelberg: Springer, Berlin, Germany, 1985, p. 347 (https://doi.org/10.1007/978-3-642-50076-3)

I. A. Bondar, T. F. Tenisheva, Y. F. Shepelev, N. A. Toropov, Dokl. Akad. Nauk SSSR 160 (1965) 1069 (http://www.mathnet.ru/links/df924f2db1305a2430f200e3f58341c7/dan30741.pdf)

M. S. Hwang, H. Y.-P. Hong, M. C. Cheng, Y. Wang, Acta Cryst. C43 (1987) 1241 (https://doi.org/10.1107/S0108270187092308)

I. Vidican, M. Smith, M., H.-C. zur Loye, J. Solid State Chem. 170 (2003) 203 (https://doi.org/10.1016/S0022-4596(02)00029-4)

J. D. Napper, R. C. Layland, M. D. Smith, H. Loye, J. Chem. Crystallogr. 34 (2004) 347 (https://doi.org/10.1023/B:JOCC.0000028666.53348.fc)

P. Dabić, M. G. Nikolić, S. Kovač, A. Kremenović, Acta Cryst. C75 (2019) 1417 (https://doi.org/10.1107/S2053229619011926)

A. Myers, Journal of the South Carolina Academy of Science 12 (2014) 200 (https://scholarcommons.sc.edu/jscas/vol12/iss1/1)

Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Oxford, 2018

Rigaku. PDXL 2: Integrated powder X-ray diffraction software. Version 2.8.3.0. Rigaku Corporation, Tokyo, Japan, 2007 https://www.rigaku.com/en/service/software/pdxl

R. C. Clark, J. S. Reid, Acta Cryst. A51 (1995) 887 (https://doi.org/10.1107/S0108767395007367)

G. M. Sheldrick, Acta Cryst. C71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)

M. Momma, F. Izumi, J. Appl. Cryst. 44 (2011) 1272 (https://doi.org/10.1107/S0021889811038970)

P. Dabić, V. Kahlenberg, B. Krueger, M. Rodić, S. Kovač, J. Blanuša, Z. Jagličić, Lj. Karanović, V. Petríček, A. Kremenović, Acta Crystallogr. B in review

A. S. Wills, VaList, 2010. Program available from www.CCP14.ac.uk

I. D. Brown, D. Altermatt, Acta Cryst. B41 (1985) 244 (https://doi.org/10.1107/S0108768185002063)

N. E. Brese, M. O’Keeffe, Acta Cryst. B47 (1991) 192 (https://doi.org/10.1107/S0108768190011041)

R. D. Shannon, Acta Cryst. A32 (1976) 751 (https://doi.org/10.1107/S0567739476001551)

Graphical Abstract

Downloads

Published

2021-04-04

How to Cite

[1]
S. Kovač, P. Dabić, and A. Kremenović, “Crystal structure of K3EuSi2O7”, J. Serb. Chem. Soc., p. -, Apr. 2021.

Issue

Section

Inorganic Chemistry