Enhanced gas permeation performance of mixed matrix membranes containing polysulfone and modified mesoporous MCM-41 Scientific paper

Main Article Content

Kaveh Abbasi Kololi
Seyed Mostafa Tabatabaei Qomsheh
Maziar Noei
Masoud Saberi
https://orcid.org/0000-0002-0840-0135

Abstract

The aim of this study is developing mixed matrix membranes (MMMs) based on silica MCM-41 dispersed in polysulfone (PSf) for separation of carbon dioxide from methane. For this purpose, MCM-41 was synthesized by hydro­thermal method and was modified with 3-aminopropyltrietoxysilane (APTES). SEM, FTIR, BET and XRD analyses were used for characterization of modified and unmodified particles. Then, various MMMs containing PSf with different weight percent (5, 10, 15 and 20) of modified and unmodified particles were prepared and the morphology and structure of the prepared membranes were studied using SEM and XRD analyses.  Regardless of the particle type, addition of the MCM-41 to PSf caused an increase in gas permeability compared to neat PSf membrane. Adding unmodified particles to PSf matrix resulted in non-ideal effects including particles agglomeration and/or the formation of interfacial voids. The MMMs with modified MCM-41 showed relatively better separation performance compared to the MMMs with unmodified MCM-41. As a result, the MMM of PSf with 20 wt.% modified MCM-41 showed a significant increase in selectivity of carbon dioxide/methane and the value of selectivity reached to 25.24.

Article Details

How to Cite
[1]
K. Abbasi Kololi, S. M. Tabatabaei Qomsheh, M. Noei, and M. Saberi, “Enhanced gas permeation performance of mixed matrix membranes containing polysulfone and modified mesoporous MCM-41 : Scientific paper”, J. Serb. Chem. Soc., May 2021.
Section
Chemical Engineering

References

J. D. Wind, PhD diss. (2002) (https://repositories.lib.utexas.edu/handle/2152/1048)

R. E. Kesting, A. Fritzsche, Wiley-Inter. (1993)

X. Guo, Z. Qiao, D. Liu, C. Zhong, J. Mat. Chem. A 7 (2019) 24738 (https://doi.org/10.1039/C9TA09012F)

S. E. Kentish, C. A. Scholes, G. W. Stevens, Recent Patent Chem. Eng. 1 (2008) 52 (https://www.ingentaconnect.com/content/ben/cheng/2008/00000001/00000001/art00005)

P. Pandey, R. Chauhan, Prog. Polym. Sci. 26 (2001) 853 (https://doi.org/10.1016/S0079-6700(01)00009-0)

M. Saberi, J. Serb Chem. Soc. 86 (2021) 341 (https://doi.org/10.2298/JSC200715046S )

A. Bos, I. G. M. Punt, M. Wessling, H. Strathmann, Sep. Purif. Technol. 14 (1998) 27 (https://doi.org/10.1016/S1383-5866(98)00057-4)

J. D. Wind, C. Staudt-Bickel, D. R. Paul, W. J. Koros, Ind. Eng. Chem. Rese. 41 (2002) 6139 (https://doi.org/10.1021/ie0204639)

A. Brunetti, P. Bernardo, E. Drioli, G. Barbieri, Y. Yampolskii, B. Freeman, Membrane Gas Separation 6 (2010) 279

P. Bernardo, G. Clarizia, Eng. Trans. 32 (2013) 1999 (https://doi.org/10.3303/CET1332334)

L. M. Robeson, J. Membr. Sci. 320 (2008) 390 (https://doi.org/10.1016/j.memsci.2008.04.030)

J. K. Ward, W. J. Koros, J. Membr. Sci. 377 (2011) 75 (https://doi.org/10.1016/j.memsci.2011.04.010)

T. W. Pechar, S. Kim, B. Vaughan, E. Marand, M. Tsapatsis, H. K. Jeong, C. J. Cornelius, J. Membr. Sci. 277 (2006) 195 (https://doi.org/10.1016/j.memsci.2005.10.029)

E. Karatay, H. Kalıpçılar, L. Yılmaz, J. Membr. Sci. 364 (2010) 75 (https://doi.org/10.1016/j.memsci.2010.08.004)

P. Jha, J. D. Way, J. Membr. Sci. 324 (2008) 151 (https://doi.org/10.1016/j.memsci.2008.07.005)

S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Sep. Purif. Technol. 90 (2012) 162 (https://doi.org/10.1016/j.seppur.2012.02.031)

A. M. Hillock, S. J. Miller, W. J. Koros, J. Membr. Sci. 314 (2008) 193 (https://doi.org/10.1016/j.memsci.2008.01.046)

M. Junaidi, C. Leo, S. Kamal, A. Ahmad, T. Chew, Fuel Process. 112 (2013) 1 (https://doi.org/10.1016/j.fuproc.2013.02.014)

R. Mahajan, R. Burns, M. Schaeffer, W. J. Koros, J. Appl. Polym. Sci. 86 (2002) 881 (https://doi.org/10.1002/app.10998)

T. T. Moore, R. Mahajan, D. Q. Vu, W. J. Koros, AICHE J. 50 (2004) 311 (https://doi.org/10.1002/aic.10029)

X. Liu, H. Sun, Y. Chen, Y. Yang, A. Borgna, Mic. Mes. Mat. 121 (2009) 73 (https://doi.org/10.1016/j.micromeso.2009.01.018)

M. Nekoomanesh, H. Arabi, G. Nejabat, M. Emami, G. Zohuri, Iran. J. Polym. Sci. Tech. (Persian), 21 (2008) 243

T. L. Chew, A. L. Ahmad, S. Bhatia, Adv. Coll. Int. Sci. 153 (2010) 43 (https://doi.org/10.1016/j.cis.2009.12.001)

G. R. NEJABAT, M. NEKOUMANESH, H. ARABI, Iran. Polym. J. 19 (2010) 79 (https://www.sid.ir/en/journal/ViewPaper.aspx?id=167621)

T. Yasmin, K. Müller, J. Chromat. A, 1217 (2010) 3362 (https://doi.org/10.1016/j.chroma.2010.03.005)

M. Laghaei, M. Sadeghi, B. Ghalei, M. Dinari, Prog. Org. Coa. 90 (2016) 163 (https://doi.org/10.1016/j.porgcoat.2015.10.007)

M. Laghaei, M. Sadeghi, B. Ghalei, M. Shahrooz, J. Mem. Sci. 513 (2016) 20 (https://doi.org/10.1016/j.memsci.2016.04.039)

S. Sorribas, B. Zornoza, C. Téllez, J. Coronas, J. Membr. Sci. 452 (2014) 184 (https://doi.org/10.1016/j.memsci.2013.10.043)

J. Yuan, S. Zhou, G. Gu, L. Wu, J. Mat. Sci. 40 (2005) 3927 (https://link.springer.com/article/10.1007/s10853-005-0714-8)

I. F. Vankelecom, E. Scheppers, R. Heus, J. B. Uytterhoeven, J. Phys. Chem. 98 (1994) 12390 (https://doi.org/10.1021/j100098a038)

Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, J. Chem. Mater. 13 (2001) 258 (https://doi.org/10.1021/cm990661z)

M. Janicke, C. Landry, S. Christiansen, S. Birtalan, G. Stucky, B. Chmelka, Chem. Мat. 11 (1999) 1342 (https://doi.org/10.1021/cm981135v)

A. Jomekian, M. Pakizeh, A. R. Shafiee, S. A. A. Mansoori, Sep. Purif. Technol. 80 (2011) 556 (https://doi.org/10.1016/j.seppur.2011.06.011)

T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, A. J. Hill, Macromolecules 36(18) (2003) 6844 (https://doi.org/10.1021/ma0341566)

I. F. Vankelecom, S. Van den broeck, E. Merckx, H. Geerts, P. Grobet, J. B. Uytterhoeven, J. Phys. Chem. 100 (1996) 3753 (https://doi.org/10.1021/jp9526511).