Application of microbial fuel cell for simultaneous treatment of metallurgical and municipal wastewater – А laboratory study Scientific paper

Main Article Content

Stefan Đorđievski
https://orcid.org/0000-0003-1737-8766
Hyusein Yemendzhiev
https://orcid.org/0000-0002-7814-2469
Ralitza Koleva
https://orcid.org/0000-0002-2093-3815
Valentin Nenov
https://orcid.org/0000-0001-6337-258X
Dragana Medić
https://orcid.org/0000-0001-9980-5949
Vanja Trifunović
https://orcid.org/0000-0003-4839-8751
Ana Maksimović
https://orcid.org/0000-0002-8918-1252

Abstract

Microbial fuel cell (MFC) is a hybrid technology that produces electricity and recovers resources from wastewater through biocatalytic and electrochemical reactions. Metallurgical facilities in Bor, Serbia, are a source of copper-rich metallurgical wastewater, and the Town of Bor is a source of municipal wastewater rich in organic matter. The aim of this paper is to inves­tigate the possibility of application of MFC for the treatment of metallurgical and municipal wastewater that are released into the Bor River in Serbia. A prototype of MFC was constructed for this study, and 3 sets of experiments were performed using model solutions and real wastewater. Copper was suc­cess­fully removed from the treated model solution with 99.42 % efficiency. Solid copper particles were obtained with a particle size of about 1 µm. Maxi­mum chemical oxygen demand (COD) removal rate of 191.7 mg L-1 h-1 was observed in the anodic compartment. The impact of this study is significant because MFC was implemented for the simultaneous treatment of two types of wastewaters, one containing metals and the other containing organic matter, and both types of wastewater are released into the same river.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Đorđievski, “Application of microbial fuel cell for simultaneous treatment of metallurgical and municipal wastewater – А laboratory study: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 6, pp. 775–784, Mar. 2022.
Section
Environmental Chemistry

Funding data

References

A. Sumisha, A. Jiben, A. Aswathy, S. Karthick, K. Haribabu, Sep. Sci. Technol. 55 (2019) 2391 (https://doi.org/10.1080/01496395.2019.1625919)

S. Đorđievski, D. Ishiyama, Y. Ogawa, Z. Stevanović, Environ. Sci. Pollut. Res. 25 (2018) 25005 (https://doi.org/10.1007/s11356-018-2541-x)

D. Ishiyama, H. Kawaraya, H. Sato, L. Obradović, B. Blagojević, J. Petrović, V. Gardić, Z. Stevanović, A. Shibayama, N. Masuda, Y. Takasaki, Sci. Tech. Rep. Grad. School Eng. Res. Sci. Akita Univ. 33 (2012) 41 (https://air.repo.nii.ac.jp/?action=repository_uri&item_id=1988&file_id=48&file_no=1)

V. Gardić, J. Petrović, L. Đurđevac-Ignjatović, S. Kolaković, S. Vujović, Chem. Ind. 69 (2015) 165 (https://doi.org/10.2298/HEMIND140128031G)

D. Adamovic, D. Ishiyama, S. Dordievski, Y. Ogawa, Z. Stevanovic, H. Kawaraya, H. Sato, Lj. Obradovic, V. Marinkovic, J. Petrovic, V. Gardic, Resour. Geol. 71 (2021) 123 (https://doi.org/10.1111/rge.12254)

V. Nenov, H. Yemendzhiev, R. Koleva, J. Dimitrova, G. Peeva, B. Midjurova, F. Zerrouq, J. Mater. Environ. Sci. 8 (2017) 2327 (http://www.jmaterenvironsci.com/Document/vol8/vol8_N7/251-JMES-Nenov.pdf)

W. Liu, X. Yin, Int. J. Miner. Metall. Mater. 24 (2017) 621(https://doi.org/10.1007/s12613-017-1444-z)

S. Rikame, A. Mungray, A. Mungray, Electrochim. Acta 275 (2018) 8 (https://doi.org/10.1016/j.electacta.2018.04.141)

Y. Wu, X. Zhao, M. Jin, Y. Li, S. Li, F. Kong, J. Nan, A. Wang, Bioresour. Technol. 253 (2018) 372 (https://doi.org/10.1016/j.biortech.2018.01.046)

H. Song, Y. Zhu, J. Li, Arabian J. Chem. 12 (2019) 2236 (https://doi.org/10.1016/j.arabjc.2015.01.008)

S. Dharmadhikari, P. Ghosh, M. Ramachandran, J. Serb. Chem. Soc. 83 (2018) 611 (https://doi.org/10.2298/JSC170902016D)

G. Peeva, H. Yemendzhiev, B. Bonev, F. Zerrouq, V. Nenov, J. Mater. Environ. Sci. 5 (2014) 2350 (http://www.jmaterenvironsci.com/Document/vol5/vol5_NS1/47-JMES-S1-PEEVA.pdf)

M. Rahimnejad, G. Najafpour, A. Ghoreyshi, Intech 5 (2011) 233 (http://doi.org/10.5772/19675)

M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S.E. Oh, Alexandria Eng. J. 54 (2015) 745 (https://doi.org/10.1016/j.aej.2015.03.031)

Y. Sharma, B. Li, Bioresour. Technol. 101 (2010) 1844 (https://doi.org/10.1016/j.biortech. 2009.10.040)

R. Koleva, H. Yemendzhiev, V. Nenov, Biotechnol. Biotechnol. Equip. 31 (2017) 511 (https://doi.org/10.1080/13102818.2017.1304183)

A.G. Capodaglio, D. Molognoni, E. Dallago, A. Liberale, R. Cella, P. Longoni, L. Pantaleoni, Sci. World J. 17 (2013) 634738 (https://doi.org/10.1155/2013/634738)

S. A. A. Olayiwola, M. S. M. Annuar, J. Serb. Chem. Soc. 86 (2021) 1 (https://doi.org/10.2298/JSC200402054S)

A. T. Heijne, F. Liu, R. V. D. Weijden, J. Weijma, C. J. N. Buisman, H. V. M. Hamelers, Environ. Sci. Technol. 44 (2010) 4376 (https://doi.org/10.1021/es100526g)

Y. J. Zhang, M. Zhang, X. Yao, Y. F. Li, Adv. Mater. Res. 156–157 (2011) 500 (https://doi.org/10.4028/www.scientific.net/AMR.156-157.500)

S. A. Cheng, B. S. Wang, Y. H. Wang, Bioresour. Technol. 147 (2013) 332 (https://doi.org/10.1016/j.biortech.2013.08.040)

K. Joksimović, A. Žerađanin, D. Randjelović, J. Avdalović, S. Miletić, G. Gojgić-Cvijović, V. P. Beškoski, J. Power Sources 476 (2020) 228739 (https://doi.org/10.1016/j.jpowsour.2020.228739)

Y. Mersinkova, H. Yemendzhiev, J. adv. biol. biotechnol. 23 (2020) 19 (https://journaljabb.com/index.php/JABB/article/view/30135)

Z. Wang, B. Lim, H. Lu, J. Fan, C. Choi, Bull. Korean Chem. Soc. 31 (2010) 2025 (https://doi.org/10.5012/bkcs.2010.31.7.2025).