The improved diesel-like fuel from upgraded tire pyrolytic oil Scientific paper

Main Article Content

Ufuk Sancar Vural
https://orcid.org/0000-0002-8510-9616
Saban Uysal
https://orcid.org/0000-0003-1061-6143
Abdullah Yinanc
https://orcid.org/0000-0002-8144-8266

Abstract

Tire pyrolytic oil (TPO) obtained from thermal pyrolysis of scrap tires is not a diesel equivalent fuel which can be used directly in vehicles due to its high density, viscosity, sulfur content, low flash point and low cetane index. It can only be used in a limited way by mixing with diesel fuel (DF) in amounts less than 30 %. In this study, the pyrolysis of scrap tires was carried out at a heating rates of 5 and 10 °C min-1 in the range of 450–600 °C, using a mixture of hierarchical zeolite (HZSM-5), mesoporous silica (MCM-41) and quicklime (CaO) as the catalyst. The obtained TPO and catalytic pyrolytic oil (CPO) were upgraded by pre-treatment, and distillation consisting of a mixture of Cu(I)-loaded mesoporous aluminosilicate (Cu(I)–MAS) and MCM-41, desul­fur­iz­at­ion and decolourization steps, respectively. To obtain diesel-like fuel, the upgraded catalytic pyrolytic oil (UCPO) and biodiesel (PBD) obtained from palm oil were blended in certain proportions. Density, viscosity, flash point and cetane index of the obtained diesel-like fuels were found within the limit values of diesel fuel.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
U. S. Vural, S. Uysal, and A. Yinanc, “The improved diesel-like fuel from upgraded tire pyrolytic oil: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 10, pp. 1219–1235, Jun. 2022.
Section
Environmental Chemistry

References

W. C. Wang, C. J. Bai, C. T. Lin, S. Prakash, Appl. Therm. Eng. 93 (2016) 330 (https://doi.org/10.1016/j.applthermaleng.2015.09.056)

W. Li, C. Huang, D. Li, P. Huo, M. Wang, L. Han, G. Chen, H. Li, X. Li, Y. Wang, M. Wang, Chinese J. Catal. 37 (2016) 526 (https://doi.org/10.1016/S1872-2067(15)60998-6)

G. C. O. Neto, L. E. C. Chaves, L. F. R. Pinto, J. C. C. Santana, M. P. C. Amorim, M. J. F. Rodrigues, Sustainability 11 (2019) 207b (https://doi.org/10.3390/su11072076)

X. Zhang, H. Li, Q. Cao, J. Li, F. Wang, Waste Managе. Res.: J. Sust. Cir. Econ. 36 (2018) 436 (https://doi.org/10.1177%2F0734242X18764292)

EPA, Markets for scrap tires, United States Environmental Protection Agency, Office of Solid Waste, EPAi, EPA/530-SW-90-074A, Octaber, 199,. pp. 23–25 (https://archive.epa.gov/epawaste/conserve/materials/tyres/web/pdf/tyres.pdf)

A. R. Phale, Environmental impact and waste management of used tyres in the RSA. Magister Artium mini disseretation, University of Johannesburg, 2005 (https://core.ac.uk/download/pdf/18220959.pdf)

B. Lebreton, A. Tuma, Int. J. Prod. Econ. 104 (2006) 639 (https://doi.org/10.1016/j.ijpe.2004.11.010)

P. Ferrão, P. Ribeiro, P. A. Silva, Waste Manage. 28 (2008) 604 (https://doi.org/10.1016/j.wasman.2007.02.033)

P. J. Bosscher, T. B. Edil, S. Kuraoka, J. Geotech. Geoenviron. Eng. 123 (1997) 295 (https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295))

M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, A. Balas, Waste Manage. 32 (2012) 1742 (https://doi.org/10.1016/j.wasman.2012.05.010)

R. Giere, K. Smith, M. Blackford, Fuel 85 (2006) 2278 (https://doi.org/10.1016/j.fuel.2005.11.024)

A. Quek, R. Balasubramanian, J. Air Waste Manage. Assoc. 59 (2009) 747 (https://doi.org/10.3155/1047-3289.59.6.747)

N. Sunthonpagasit, M. R. Duffey, Resour. Conserv. Recyc. 40 (2004) 281 (https://doi.org/10.1016/S0921-3449(03)00073-9)

K. Bazienė, R. Vaiškūnaitė, Sustain. 8 (2016) 767 (https://doi.org/10.3390/su8080767)

T. H. Christensen, Solid Waste Technology & Management 1 and 2, Wiley, Chichester, 2011 (https://doi.org/10.1002/9780470666883)

N. Nkosi, E. Muzenda, M. Laeng, in Proceedings of the World Congress on Engineering, Vol. (II), July 2–4, London, UK, 2014 http://www.iaeng.org/publication/WCE2014/WCE2014_pp979-985.pdf

D. T. Dick, O. Agboola, A. O. Ayeni, AIMS Energy 8 (2020) 869 (https://www.doi.org/10.3934/energy.2020.5.869)

A. Alsaleh, M. L. Sattler, Curr. Sustain. Renew. Energy Rep. 1 (2014) 129 (https://doi.org/10.1007/s40518-014-0019-0)

E. Aylo´n, A. Ferna´ndez-Colino, M. V. Navarro, R. Murillo, T. Garcı´a, A. M. Mastral, Ind. Eng. Chem. Res. 47 (2008) 4029 (https://doi.org/10.1021/ie071573o)

Z. Cepic, V. Mihajlović, S. Ðuric, M. Milotić, M. Stošić, B. Stepanov, M. I. Micunović, Energies 14 (2021) 5403 (https://doi.org/10.3390/en14175403)

P. T Williams, S. Besler, D. T. Taylor, Fuel 69 (1990)1474 (https://doi.org/10.1016/0016-2361(90)90193-T)

X. Dai, X. Yin, C. Wu, W. Zhang, Y. Chen, Energy 26 (2001) 385 (https://doi.org/10.1016/S0360-5442(01)00003-2)

A. Uyumaz, B. Aydogan, H. Solmaz, E. Yilmaz, D. Yesim Hopa, T. Aksoy Bahtli, O. Solamz, F. Aksoy, J. Energy Inst. 92 (2019) 1406 (https://doi.org/10.1016/j.joei.2018.09.001)

S. Chouaya, M. A. Abbassi, R. B. Younes, A. Zoulalian, Russ. J. Appl. Chem. 91 (2018) 1603 (https://doi.org/10.1134/S1070427218100063)

M. A. Aziz, M. A. Rahman, H. Molla, J. Radiat. Res. Appl. Sci. 11 (2018) 311 (https://doi.org/10.1016/j.jrras.2018.05.001)

M. Banar, V. Akyıldız, A. Ozkan, Z. Cokaygil, O. Onay, Energy Conver. Manage. 62 (2012) 22 (https://doi.org/10.1016/j.enconman.2012.03.019)

D. K. Ratnasari, M. A. Nahil, P. T. Williams, J. Anal. Appl. Pyrolysis 124 (2017) 631 (https://doi.org/10.1016/j.jaap.2016.12.027)

W. H. Chang, C. T. Tye, Malays. J. Anal. Sci. 17 (2013) 176 (http://mjas.analis.com.my/wp-content/uploads/2018/11/Tye.pdf)

D. Almeida, M. F. Marques, Polímeros 26 (2016) 44 (https://doi.org/10.1590/0104-1428.2100)

R. Miandad, M. A. Barakat, M. Rehan, A. S. Aburiazaiza, J. Gardy, A. S. Nizami, Process Saf. Environ. Prot. 116 (2018) 542 (https://doi.org/10.1016/j.psep.2018.03.024)

M. Olazar, R. Aguado, M. Arabiourrutia, G. Lopez, A. Barona, J. Bilbao, Energy Fuels 22 (2008) 2909 (https://doi.org/10.1021/ef8002153)

J. Zhu, X. Meng, F. Xiao, Front. Chem. Sci. Eng. 7 (2013) 233 (https://doi.org/10.1007/s11705-013-1329-2)

W. U. Eze, R. Umunakwe, H. C. Obasi, H.C., M. I. Ugbaja, C. C. Uche, I. C. Madufor, Clean Technol. Recyc. 1 (2021) 50 (https://doi.org/10.3934/ctr.2021003)

E. Santos, B. Rijo, F. Lemos, M. A. N. D. A. Lemos, Chem. Eng. J. 278 (2019) 122077 (https://doi.org/10.1016/j.cej.2019.122077)

E. R. Umeki, C. F. de Oliveira, R. B. Torres, R. G. dos Santos, Fuel 185 (2016) 236 (http://dx.doi.org/10.1016/j.fuel.2016.07.092)

M. S. Hossain, A. Abedeen, M. R. Karim, M. Moniruzzaman, M. Juwel Hosen, Iran. J. Energy Environ. 8 (2017) 189 (https://www.ijee.net/article_64681_b5fefefcb5742bf3931805919db680dd.pdf)

A. Ayanaoglu, R. Yumrutas, Energy 103 (2016) 456 (https://doi.org/10.1016/j.energy.2016.02.155)

F. Campuzano, A. G. A. Jameel, Wen. Zhang, A-H. Emwas, A. F. Agudelo, J. D. Martínez, S. M. Sarathy, Fuel 290 (2021) 120041 (https://doi.org/10.1016/j.fuel.2020.120041)

W. Li, Q. Liu, J. Xing, H. Gao, X. Xiong, Y. Li, X. Li, H. Liu, Environ. Energy Eng. 53 (2007) 3263 (https://doi.org/10.1002/aic.11319)

Q. Zhang, M. Zhu, I. Jones, Z. Zhang, D. Zhang, Energy Fuels 34 (2020) 6209 (https://www.doi.org/10.1021/acs.energyfuels.9b03968)

E. R. Umeki, C. F. de Oliveira, R. B. Torres, R. G. dos Santos, Fuel 185 (2016) 236 (http://dx.doi.org/10.1016/j.fuel.2016.07.092)

Y. Kidoguchi, C. Yang, R. Kato, K. Miwa, JSAE Rev. 21 (2000) 469 (https://doi.org/10.1016/S0389-4304(00)00075-8)

H. M. Patel, T. M. Patel, Int. J. Eng. Research Technol. 1 (2012) 1 (https://www.ijert.org/performance-analysis-of-single-cylinder-diesel-engine-fuelled-with-pyrolysis-oil-diesel-and-its-blend-with-ethanol)

A. Sanchís, A. Veses, J. D. Martínez, J. M. López, T. García, R. Murillo, J. Environ. Manage. 317 (2022) 115323 (https://doi.org/10.1016/j.jenvman.2022.115323)

D. T. Dick, O. Agboola, A. O. Ayeni, AIMS Energy 8 (2020) 869 (https://doi.org/10.3934/energy.2020.5.869)

T. F. Parangi, R. M. Patel, U. V. Chudasama, Bull. Mater. Sci. 37 (2014) 609 (https://doi.org/10.1007/s12034-014-0709-7)

A. Khaleque, M. R. Islam, M. S. Hossain, M. Khan, M. S. Rahman, H. Haniu, Mech. Eng. Res. J. 10 (2016) 35 (https://www.cuet.ac.bd/merj/vol.10/MERJ-07.pdf)

R. Serefentse, W. Ruwona, G. Danha and E. Muzenda, Procedia Manuf. 35 (2019) 762 (https://www.doi.org/10.1016/j.promfg.2019.07.013)

U. S. Vural, Turkish J. Eng. 4 (2020) 62 (https://doi.org/10.31127/tuje.616960)

T. Yogeeswara, U. Devendra, A. Kalaisselvane, AIP Conf. Proc. 2225 (2020) 030003 (https://doi.org/10.1063/5.0005584)

Md. A. Hossain, M. Warith, J. Liu, B. Mondal, in Proceedings of 2011 Pan-Am CGS Geotechnical Conference, Octaber 2–6, Toronto, Canada, 2011 (http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/GEO11Paper1073.pdf)

Q. Wang, X. Zhang, S. Sun, Z. Wang, D. Cui, ACS Omega 5 (2020) 10276 (https://doi.org/10.1021/acsomega.9b03945)

A. Nicolici, C. Pana, N. Negurescu, A. Cernat, C. Nutu, IOP Conf. Ser.: Mater. Sci. Eng. 444 (2018) 072003 (https://doi.org/10.1088/1757-899X/444/7/072003)

N. M. Ribeiro, A. C. Pinto, C. M. Quintella, G. O. da Rocha, L. S. G. Teixeira, L. L. N. Guarieiro, M. C. Rangel, M. C. C. Veloso, M. J. C. Rezende, R. S. Cruz, A. M. de Oliveira, E. A. Torres, J. B. de Andrade, Energy Fuels 21 (2007) 2433 (https://doi.org/10.1021/ef070060r)

M. Karagoz, U. Agbulut, S. Saridemir, Fuel 275 (2020) 117844 (https://doi.org/10.1016/j.fuel.2020.117844)

M. Z. H. Khan, M. Sultana, M. R. Al-Mamun, M. R. Hasan, J. Environ. Public Health 6 (2016) 7869080 (https://doi.org/10.1155/2016/7869080)

T. A. Tran, in Diesel and Gasoline Engines, R. Viskup (Ed.), IntechOpen, Rijeka, 2020 (https://doi.org/10.5772/intechopen.89400)

R. Cataluña, R. da Silva, Y. Ren, J. Comb. 2012 (2012) 738940 (https://doi.org/10.1155/2012/738940)

T. Yogeeswara, U. Devendra, A. Kalaisselvane, AIP Conf. Proc. 2225 (2020) 030003 (https://doi.org/10.1063/5.0005584).

Most read articles by the same author(s)