Experimental investigation on the influencing factors of preparing three-phase foam Scientific paper

Main Article Content

Bin Wang
Sheng Zuo
Xixi Zuo
Xiangmei Ma


A three-phase foam is considered one of the promising advanced materials for fighting fires. However, the preparation conditions, cost and effect are key factors for industrial applications. In this study, new three-phase foam systems with fly ash and a complex surfactant are proposed. Five types of surf­actants alcohol polyoxyethylene ether sodium sulfate, coconut oil diethan­ola­mine, sodium lauryl sulfate, polyacrylamide and polyether-modified silicone resin emulsion were selected as foaming agents. Through laboratory experi­ments, the effect on the expansion ratio and foam stability of the surfactant type/con­centration, fly ash particle concentration/size and pH were inves­tigated. The foaming condition was determined by numerical optimization. The results of this study may serve as a reference for understanding the preparation of a novel three-phase foam. It is hoped that this work could provide useful guidance for the preparation of efficient three-phase fire-extinguishing foam for the safe guarding of process safety in the field of chemical production, transportation, and stor­age suitable for drug delivery than Al12P12 and Al12N12 based on their recovery times.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
B. Wang, S. Zuo, X. Zuo, and X. Ma, “Experimental investigation on the influencing factors of preparing three-phase foam: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 2, pp. 199–207, Sep. 2022.
Environmental Chemistry
Author Biographies

Sheng Zuo, School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, China


Xixi Zuo, School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, China


Funding data


Y. Zheng, Q. Li, G. Zhang, Y. Zhao, P. Zhu, X. Ma, X. Liu, Fuel Process Technol. 208 (2020) 106510 (https://doi.org/10.1016/j.fuproc.2020.106510)

M. Wu, Y. Liang, Y. Zhao, W. Wang, X. Hu, F. Tian, Z. He, Y. Li, T. Liu, Colloids Surfaces, A 629 (2021) 127443 (https://doi.org/10.1016/j.colsurfa.2021.127443)

Z. Jelonek, A. Drobniak, M. Mastalerz, I. Jelonek, Sci. Total Environ. 747 (2020) 141267 (https://doi.org/10.1016/j.scitotenv.2020.141267)

X. Hu, Y. Li, X. He, C. Li, Z. Li, X. Cao, X. Xin, P. Somasundaran, J. Phys. Chem., B 116 (2012) 160 (https://doi.org/10.1021/jp205753w)

M. Simjoo, Q. P. Nguyen, P. L. J. Zitha, Ind. Eng. Chem. Res. 51 (2012) 10225 (https://doi.org/10.1021/ie202218z)

Q. Liu, S. Zhang, D. Sun, J. Xu, Colloids Surfaces, A 355 (2010) 151 (https://doi.org/10.1016/j.colsurfa.2009.12.003)

L. La Fosse, M. Cummins, Coal Peat Fires: Global Perspect. 1 (2011) 327 (https://doi.org/10.1016/B978-0-444-52858-2.00019-0)

Y. Li, G. Xiao, C. Chen, C. Chen, F. Li, F. Li, L. Lin, Colloids Surfaces, A 627 (2021) 127147 (https://doi.org/10.1016/j.colsurfa.2021.127147)

P. Sobolciak, A. Popelka, A. Tanvir, M. A. Al-Maadeed, S. Adham, I. Krupa, Water 13 (2021) 652 (https://doi.org/10.3390/w13050652)

R. Rafati, A. S. Haddad, H. Hamidi, Colloids Surfaces, A 509 (2016) 19 (https://doi.org/10.1016/j.colsurfa.2016.08.087)

W. P. Yang, T. F. Wang, Z. X. Fan, Q. Miao, Z. Y. Deng, Y. Y. Zhu, Energy Fuels 31 (2017) 4721 (https://doi.org/10.1021/acs.energyfuels.6b03217)

B. M. Mbama Gaporaud, P. Sajet, G. Antonini, Chem. Eng. Sci. 53 (1998) 735 (https://doi.org/10.1016/S0009-2509(98)00332-7)

N. P. Yekeen, M. A. Manan, A. K. Idris, E. Padmanabhan, R. Junin, A. Samin, A. O. Gbadamosi, J. Petrol Sci. Eng. 164 (2018) 43 (https://doi.org/10.1016/j.petrol.2018.01.035)

X. Xi, Q. L. Shi, Fuel 288 (2021) 119354 (https://doi.org/10.1016/j.fuel.2020.119354)

T. Wang, H. Fan, W. Yang, Z. Meng, Fuel 264 (2020) 116832 (https://doi.org10.1016/j.fuel.2019.116832)

K. Samvatsar, H. Dave, Mater. Today: Proc. 47 (2021) 2384 (https://doi.org/10.1016/j.matpr.2021.04.353)

M. R. Little, V. Adell, A. R. Boccaccini, C. R. Cheeseman, Resour. Conserv. Recycl. 52 (2008) 1329 (https://doi.org/10.1016/j.resconrec.2008.07.017)

B. Wei, H. Li, Q. Li, L. Lu, Y. Li, W. Pu, Y. Wen, Fuel 211 (2018) 223 (https://doi.org/10.1016/j.fuel.2017.09.054)

B. Qin, Y. Lu, Y. Li, D. Wang, Adv. Powder Technol. 25 (2014) 1527 (https://doi.org/10.1016/j.apt.2014.04.010)

Z. Shao, D. Wang, Y. Wang, X. Zhong, X. Tang, X. Hu, China Nat. Hazard. 75 (2015) 1833 (https://doi.org/10.1007/s11069-014-1401-3)

U. T. Gonzenbach, A. R. Studart, A. Elena Tervoort, L. J. Gauckler, Langmuir 22 (2006) 10983 (https://doi.org/10.1021/la061825a)

T. N. Hunter, R. J. Pugh, G. V. Franks, G. J. Jameson, Adv. Colloid Interface Sci. 137 (2008) 57 (https://doi.org/10.1016/j.foodhyd.2007.08.005)

D. T. Johnson, J. Disper. Sci. Technol. 25 (2005) 575 (https://doi.org/10.1081/DIS-200027307)

G. Zhao, C. Dai, D. Wen, J. Fang, Colloid Surfaces, A 497 (2016) 214 (https://doi.org/10.1016/j.colsurfa.2016.02.037)

N. Jiang, Y. J. Sheng, C. L. Li, S. X. Lu, J. Mol. Liq. 268 (2018) 249 (https://doi.org/10.1016/j.molliq.2018.07.055)

R. Zhou, X. Lang, X. Zhang, B. Tao, L. He, Proc. Safety Environ. Prot. 146 (2021) 360 (https://doi.org/10.1016/j.psep.2020.09.017)

M. Savić Biserčić, L. Pezo, I. Sredović Ignjatović, Lj. Ignjatović, A. Savić, U. Jovanović, V. Andrić, J. Serb. Chem. Soc. 81 (2016) 813 (https://doi.org/10.2298/JSC151222027B)

H. Zhu, C. Hu, J. Guo, X. Wang, B. Wu, Coal Technol. (China) 38 (2019) 45 (https://doi.org/10.13301/j.cnki.ct.2019.09.016)

Z. Lei, N. Aziz, T. Ren, J. Nemcik, S. Tu, Arch. Min. Sci. 59 (2014) 807 (https://dx.doi.org/10.2478/amsc-2014-0056).