Binding of β-casein with fluvastatin and pitavastatin Scientific paper

Main Article Content

Hamid Dezhampanah
https://orcid.org/0000-0002-4378-2722
Omideh Rajabi Miandehi
https://orcid.org/0000-0003-2839-1704

Abstract

In this work, the binding interaction of fluvastatin (FLU) and pit-av­astatin (PIT) with bovine β-casein (β-CN) were performed under physiological conditions (pH 7.2) by fluorescence emission spectroscopy, synchronous fluor­escence spectroscopy, Fourier transform infrared spectroscopy (FTIR) and molecular docking methods. Due to the formation of FLU-β-CN and PIT-β-CN complexes, the intrinsic fluorescence of β-CN was quenched. The number of bound FLU and PIT per protein molecule (n) were about 1, also the binding constant of FLU-β-CN and PIT-β-CN complexes were 7.96×104 and 3.44×104 M-1 at 298 K, respectively. This result suggests that the binding affinity of FLU to β-CN was higher than that for PIT. Molecular modelling showed different binding sites for FLU and PIT on β-CN. All these experimental results suggest that β-CN can be used as a carrier protein which delivers FLU and PIT based drugs to target molecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. Dezhampanah and O. Rajabi Miandehi, “Binding of β-casein with fluvastatin and pitavastatin: Scientific paper”, J. Serb. Chem. Soc., Sep. 2022.
Section
Theoretical Chemistry

References

M. Gupta, R. Sharma, A. Kumar, Pharm. Exp. Med. 19 (2019) 259 (https://doi.org/10.1007/s13596-019-00393-x )

J. H. Shi, Q. Wang, D. Q. Pan, T. T. Liu, M. Jiang. J. Biomol. Struct. Dyn. 35 (2017) 1529 (https://doi.org/10.1080/07391102.2016.1188416)

A. L. Toppo, M. Yadav, S. Dhagat, S. Ayothiraman, J. S. Eswari, Ind. J. Biochem. Biophys. 58 (2021) 127

M. S. Khan, Ann. Romanian Soc. Cell Biol. 25 (2021) 6244

J. S. Yu, D. H. Shin, J. Kim, Pharmaceutics 12 (2020) 1133 (https://doi.org/10.3390/pharmaceutics12121133)

Ž. Reiner, M. Hatamipour, M. Banach, M. Pirro, K. Al-Rasadi, Arch. Med. Sci. 16 (2020) 490 (https://dx.doi.org/10.5114%2Faoms.2020.94655)

A. Sahebkar, N. Kiaie, A. M. Gorabi, M. R. Mannarino, V. Bainaconi, T. Jamialahmadi, M. Pirro, M. Banach, Prog. Lipid Res. 84 (2021) 101127 (https://doi.org/10.1016/j.plipres.2021.101127)

S. Rahimi Yazdi, M. Corredig, Food Chem. 132 (2012) 1143 (https://doi.org/10.1016/j.foodchem.2011.11.019)

K. L. Field, B. A. Kimball, J. A. Mennella, G. K. Beauchamp, A. A. Bachmanov, Physiol. Behav. 93 (2008) 189 (https://doi.org/10.1016/j.physbeh.2007.08.010)

Z. Allahdad, M. Varidi, R. Zadmard, A. Akbar, Food Chem. 255 (2018) 187 (https://doi.org/10.1016/j.foodchem.2018.01.143)

H. E. Indyk, B. D. Gill, J. E. Wood, S. Chetikam, T. Kobayashi, J. Food Compos. Anal. 101 (2021) 103946 (https://doi.org/10.1016/j.jfca.2021.103946)

M. Li, R. Kembaren, Y. Ni, J.M. Kleijn, Food Chem. 352 (2021) (https://doi.org/10.1016/j.foodchem.2021.129400)

N. Sarreshtehdari, F.S. Mohseni-Shahri, F. Moeinpour, Luminescence 36 (2021) 360 (https://doi.org/10.1002/bio.3951)

I. Portnaya, U. Cogan, Y. D. Livney, O. Ramon, K. Shimoni, M. Rosenberg, D. Danino, Food Chem. 54 (2006) 5555 (https://doi.org/10.1021/jf060119c)

J. Kaur, L. Katopo, A. Hung, J. Ashton, S. Kasapis, Food Chem. 252 (2018) 163 (https://doi.org/10.1016/j.foodchem.2018.01.091)

D. C. Thorn, S. Meehan, M. Sunde, A. Rekas, S. L. Gras, C. E. MacPhee, C. M. Dobson, M. R. Wilson, J. A. Carver, Biochemistry 44 (2005) 17027 (https://doi.org/10.1021/bi051352r)

L. Condict, J. Kaur, A. Hung, J. Ashton, S. Kasapis, Food Hydrocoll. 89 (2019) 351 (https://doi.org/10.1016/j.foodhyd.2018.10.055)

F. Mehranfar, A. K. Bordbar, H. Parastar, J. Photochem. Photobiol., B 127 (2013) 100 (https://doi.org/10.1016/j.jphotobiol.2013.07.019)

I. Hasni, P. Bourassa, S. Hamdani, G. Samson, R. Carpentier, H. A. Tajmir-Riahi, Food Chem. 126 (2011) 630 (https://doi.org/10.1016/j.foodchem.2010.11.087)

H. Dezhampanah, M. Esmaili, A. Khorshidi, J. Mol. Struct. 1136 (2017) 50 (https://doi.org/10.1016/j.molstruc.2017.01.065)

T. Liao, Y. Zhang, X. Huang, Z. Jiang, X. Tuo, Spectrochim. Acta, A 246 (2021) 119000 (https://doi.org/10.1016/j.saa.2020.119000)

F. Kong, J. Tian, M. Yang, Y. Zheng, X. Cao, X. Yue, Spectrochim. Acta A 243 (2020) (https://doi.org/10.1016/j.saa.2020.118824)

B. Li, R. Fu, H. Tan, Y. Zhang, W. Teng, Z. Li, J. Tian, Spectrochim. Acta, A 259 (2021) 119910 (https://doi.org/10.1016/j.saa.2021.119910)

Q. Wang, C. R. Huang, M. Jiang, Y. Y. Zhu, J. Wang, J. Chen, J. H. Shi, Spectrochim. Acta, A 156 (2016) 155 (https://doi.org/10.1016/j.saa.2015.12.003)

Z. Yin, X. Qie, M. Zeng, Z. Wang, F. Qin, J. Chen, W. Li, Z. He, Food Hydrocoll. 123 (2022) 107177 (https://doi.org/10.1016/j.foodhyd.2021.107177)

F. Azarakhsh, A. Divsalar, A. A. Saboury, A. Eidi, J. Mol. Liq. 333 (2021) 115999 (https://doi.org/10.1016/j.molliq.2021.115999)

G. Ma, C. Tang, X. Sun, J. Zhang, Food Hydrocoll. 113 (2021) 106485 (https://doi.org/10.1016/j.foodhyd.2020.106485)

28. A. Chakraborty, S. Basak, J. Photochem. Photobiol., B 87 (2007) 191 (https://doi.org/10.1016/j.jphotobiol.2007.04.004)

H. Dezhampanah, R. Firouzi, Z. Moradi Shoeili, R. Binazir, J. Mol. Struct. 1205 (2020) 127557 (https://doi.org/10.1016/j.molstruc.2019.127557)

K. Yang, C. Zhou, C. Liao, J. Sun, Y. Wang, R. Guan, J. Neng, P. Sun, LWT 144 (2021) 111225 (https://doi.org/10.1016/j.lwt.2021.111225)

M. Ariyaeifar, H. Amiri Rudbari, M. Sahihi, Z. Kazemi, A. A. Kajani, H. Zali-Boeini, N. Kordestani, G. Bruno, S. Gharaghani, J. Mol. Struct. 1161 (2018) 497 (https://doi.org/10.1016/j.molstruc.2018.02.042)

J. H. Shi, J. Wang, Y. Y. Zhu, J. Chen, J. Lumin. 145 (2014) 643 (https://doi.org/10.1016/j.jlumin.2013.08.042)

J. Hua Shi, D. Qi Pan, X. Xiou Wang, T. T. Liu, M. Jiang, Q. Wang, J. Photochem. Photobiol., B 162 (2016) 14–23 (https://doi.org/10.1016/j.jphotobiol.2016.06.025)

B. Hemmateenejad, M. Shamsipur, F. Samari, T. Khayamian, J. Pharm. Biomed. Anal. 67–68 (2012) 201 (https://doi.org/10.1016/j.jpba.2012.04.012)

H. Bi, L. Tang, X. Gao, J. Jia, H. Lv, J. Lumin. 178 (2016) 72 (https://doi.org/10.1016/j.jlumin.2016.05.048)

S. Gong, C. Yang, J. Zhang, Y. Yu, X. Gu, W. Li, Z. Wang, Food Hydrocoll. 111 (2021) 106223 (https://doi.org/10.1016/j.foodhyd.2020.106223)

P. Bourassa, L. Bekale, H. A. Tajmir-Riahi, J. Biol. Macromol. 70 (2014) 156 (https://doi.org/10.1016/j.ijbiomac.2014.06.038)

S. K. Pawar, S. Jaldappagari, J. Pharm. Anal. 9 (2019) 274 (https://doi.org/10.1016/j.jpha.2019.03.007).