Transformation of fluorite δ-Bi2O3 into a new tetragonal phase Scientific paper

Main Article Content

Vladimir V. Zyryanov
https://orcid.org/0000-0003-0781-8107
Sergey A. Petrov
https://orcid.org/0000-0002-9733-153X

Abstract

Bismuth oxide kinetically stabilized by doping with a metastable structure of disordered fluorite δ-Bi2O3 has a unique conductivity. Oxygen sel­ective membranes at intermediate temperatures ~550 °C, on the base of cermet δ-Bi2O3/Ag, have the highest potential for air separation and can be used to produce oxygen for distributed multigeneration by burning fossil carbon fuels. When searching for the optimal composition of δ-Bi2O3, the degradation of fluorite into a new tetragonal phase was discovered in ceramics synthesized using mechanical activation. The tetragonal phase is formed and exists in a topo­taxial composite with the fluorite structure. For a relatively stable over a wide temperature range tetragonal phase with a = 0.3854, c = 0.88905 nm, S.G. P-4, crystal structure and atomic coordinates have been proposed. In samples of fluorite and topotaxial composite, the Raman and Mössbauer spec­tra were recorded and discussed. The discovery of a new tetragonal phase of doped bismuth oxide and its existence area makes it possible to optimize the composition and the synthesis of a more stable solid electrolyte δ-Bi2O3 with high conductivity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
V. V. Zyryanov and S. A. Petrov, “Transformation of fluorite δ-Bi2O3 into a new tetragonal phase: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 12, pp. 1367–1380, Nov. 2022.
Section
Inorganic Chemistry

Funding data

References

H. A. Harwig, A.G. Gerards, J. Solid State Chem. 26 (1978) 265 (https://dx.doi.org/10.1016/0022-4596(78)90161-5)

P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ionics 89 (1996) 179 (https://dx.doi.org/10.1016/0167-2738(96)00348-7)

V. V. Kharton, F. M. B. Marques, A. Atkinson, Solid State Ionics 174 (2004) 135 (https://dx.doi.org/10.1016/j.ssi.2004.06.015)

B. Singh, S. Ghosh, S. Aich, B. Roy, J. Power Sources 339 (2017) 103 (https://dx.doi.org/10.1016/j.jpowsour.2016.11.019)

A. Dapčević, D. Poleti, L. Karanović, J. Miladinović, J. Serb. Chem. Soc. 82 (2017) 1433 (https://doi.org/10.2298/JSC170711111D)

A. Matsumoto, Y. Koyama, I. Tanaka, Phys. Rev., B 81 (2010) 094117 (https://dx.doi.org/10.1103/PhysRevB.81.094117)

N. Jiang, R. M. Buchanan, F. E. G. Henn, A. F. Marshall, D. A. Stevenson, E. D. Wachsman, Mater. Res. Bull. 29 (1994) 247 (https://doi.org/10.1016/0025-5408(94)90020-5)

S. Boyapati, E. D. Wachsman, N. Jiang, Solid State Ionics 140 (2001) 149 (https://doi.org/10.1016/S0167-2738(01)00698-1)

S. Boyapati, E. D. Wachsman, B. C. Chakoumakos, Solid State Ionics 138 (2001) 293 (https://doi.org/10.1016/s0167-2738(00)00792-x)

E. D. Wachsman, J. Eur. Ceram. Soc. 24 (2004) 1281 (http://dx.doi.org/10.1016/s0955-2219(03)00509-0)

V. V. Zyryanov, A. S. Ulihin, Ceram. Int. 48 (2022) 16877 (https://doi.org/10.1016/j.ceramint.2022.02.242)

V. V. Zyryanov, Inorg. Mater. 41 (2005) 378 (http://dx.doi.org/10.1007/s10789-005-0140-y)

V. V. Zyryanov, Russ. Chem. Rev. 77 (2008) 105 (https://doi.org/10.1070/RC2008v077n02ABEH003709)

V. V. Zyryanov, S. A. Petrov, A. S. Ulihin, Ceram. Int. 47 (2021) 29499 (https://doi.org/10.1016/j.ceramint.2021.07.118)

B.-H. Yun, C.-W. Lee, I. Jeong, K. T. Lee, Chem. Mater. 29 (2017) 10289 (https://doi.org/10.1021/acs.chemmater.7b03894)

A. J. Wright, J. Luo, J. Mater. Sci. 1000 (2020) 9812 (https://doi.org/10.1007/s10853-020-04583-w)

F. F. H. Aragon, J. C. R. Aquino, J. E. Ramos, J. A. H. Coaquira, I. Gonzalez, W. A. A. Macedo, S. W. da Silva, P. C. Morais, J. Appl. Phys. 122 (2017) 204302 (https://doi.org/10.1063/1.4999457)

R. Nedyalkova, D. Niznansky, A-C. Roger, Catal. Comm. 10 (2009) 1875 (http://dx.doi.org/10.1016/j.catcom.2009.06.017)

A. Kirsch, M. M. Murshed, F. J. Litterst, T. M. Gesing, J. Phys. Chem., C 123 (2019) 3161 (http://dx.doi.org/10.1021/acs.jpcc.8b09698)

F. D. Hardcastle, I. E. Wachs, J. Solid State Chem. 97 (199) 319 (https://doi.org/10.1016/0022-4596(92)90040-3).