Transformation of fluorite δ-Bi2O3 into a new tetragonal phase Scientific paper

Main Article Content

Vladimir V. Zyryanov
Sergey A. Petrov


Bismuth oxide kinetically stabilized by doping with a metastable structure of disordered fluorite δ-Bi2O3 has a unique conductivity. Oxygen sel­ective membranes at intermediate temperatures ~550 °C, on the base of cermet δ-Bi2O3/Ag, have the highest potential for air separation and can be used to produce oxygen for distributed multigeneration by burning fossil carbon fuels. When searching for the optimal composition of δ-Bi2O3, the degradation of fluorite into a new tetragonal phase was discovered in ceramics synthesized using mechanical activation. The tetragonal phase is formed and exists in a topo­taxial composite with the fluorite structure. For a relatively stable over a wide temperature range tetragonal phase with a = 0.3854, c = 0.88905 nm, S.G. P-4, crystal structure and atomic coordinates have been proposed. In samples of fluorite and topotaxial composite, the Raman and Mössbauer spec­tra were recorded and discussed. The discovery of a new tetragonal phase of doped bismuth oxide and its existence area makes it possible to optimize the composition and the synthesis of a more stable solid electrolyte δ-Bi2O3 with high conductivity.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
V. V. Zyryanov and S. A. Petrov, “Transformation of fluorite δ-Bi2O3 into a new tetragonal phase: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 12, pp. 1367–1380, Nov. 2022.
Inorganic Chemistry

Funding data


H. A. Harwig, A.G. Gerards, J. Solid State Chem. 26 (1978) 265 (

P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ionics 89 (1996) 179 (

V. V. Kharton, F. M. B. Marques, A. Atkinson, Solid State Ionics 174 (2004) 135 (

B. Singh, S. Ghosh, S. Aich, B. Roy, J. Power Sources 339 (2017) 103 (

A. Dapčević, D. Poleti, L. Karanović, J. Miladinović, J. Serb. Chem. Soc. 82 (2017) 1433 (

A. Matsumoto, Y. Koyama, I. Tanaka, Phys. Rev., B 81 (2010) 094117 (

N. Jiang, R. M. Buchanan, F. E. G. Henn, A. F. Marshall, D. A. Stevenson, E. D. Wachsman, Mater. Res. Bull. 29 (1994) 247 (

S. Boyapati, E. D. Wachsman, N. Jiang, Solid State Ionics 140 (2001) 149 (

S. Boyapati, E. D. Wachsman, B. C. Chakoumakos, Solid State Ionics 138 (2001) 293 (

E. D. Wachsman, J. Eur. Ceram. Soc. 24 (2004) 1281 (

V. V. Zyryanov, A. S. Ulihin, Ceram. Int. 48 (2022) 16877 (

V. V. Zyryanov, Inorg. Mater. 41 (2005) 378 (

V. V. Zyryanov, Russ. Chem. Rev. 77 (2008) 105 (

V. V. Zyryanov, S. A. Petrov, A. S. Ulihin, Ceram. Int. 47 (2021) 29499 (

B.-H. Yun, C.-W. Lee, I. Jeong, K. T. Lee, Chem. Mater. 29 (2017) 10289 (

A. J. Wright, J. Luo, J. Mater. Sci. 1000 (2020) 9812 (

F. F. H. Aragon, J. C. R. Aquino, J. E. Ramos, J. A. H. Coaquira, I. Gonzalez, W. A. A. Macedo, S. W. da Silva, P. C. Morais, J. Appl. Phys. 122 (2017) 204302 (

R. Nedyalkova, D. Niznansky, A-C. Roger, Catal. Comm. 10 (2009) 1875 (

A. Kirsch, M. M. Murshed, F. J. Litterst, T. M. Gesing, J. Phys. Chem., C 123 (2019) 3161 (

F. D. Hardcastle, I. E. Wachs, J. Solid State Chem. 97 (199) 319 (