Bactericidal effects of copper–polypyrrole composites modified with silver nanoparticles against Gram-positive and Gram-negative bacteria Scientific paper

Main Article Content

Patricia Marucci
https://orcid.org/0000-0002-6689-6167
Maria Sica
https://orcid.org/0000-0001-6656-0009
Lorena Brugnoni
https://orcid.org/0000-0002-3008-1388
Maria Belen Gonzalez
https://orcid.org/0000-0001-6187-7912

Abstract

The aim of this research is to study the bactericidal effects of copper–polypyrrole (PPy) composites deposited onto 316L stainless steel (SS) modi­fied with silver nanopar­ticles (Np). The antimicrobial properties were eval­uated against twenty-four strains of Gram-positive and Gram-negative bacteria. Among the twenty-four strains studied, isolates included reference strains (Escherichia coli ATCC 25922, Escherichia coli 0157:H7 EDL 933, Sta­phylo­coccus aureus ATCC 25923 and Listeria monocytogenes ATCC 7644), as well as strains iso­lated from food and clinical samples. The antimicrobial activity of the compo­sites demonstrated that all PPy-modified films had antibacterial properties. Notably, Cu-PPyAgNp500 exhibited the strongest inhibitory activity against both Gram-negative and Gram-positive bacteria. Surface modification of 316L SS with these films is a promising and viable alternative for the dev­elopment of novel antibacterial composites that can inhibit the growth of a sig­nificant num­ber of bacteria.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
P. Marucci, M. Sica, L. Brugnoni, and M. B. Gonzalez, “Bactericidal effects of copper–polypyrrole composites modified with silver nanoparticles against Gram-positive and Gram-negative bacteria: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 9, pp. 889–904, Sep. 2023.
Section
Electrochemistry

Funding data

References

World Health Organization (WHO), 2021, Antimicrobial resistance, Available from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance аccessed 26 October 2022

World Health Organization (WHO), 2015, Global Action plan antimicrobial resistance, Document Production Services, Geneva, Switzerland. Available from https://ahpsr.who.int/publications/i/item/global-action-plan-on-antimicrobial-resistance аccessed 26 October 2022

E. Seebach, K. F. Kubatzky, Front. Immunol. 10 (2019) 1724 (https://doi.org/10.3389/fimmu.2019.01724)

M. Z. Ibrahim, A. A. D. Sarhan, F. Y. M. Hamdi, J. Alloys Compd. 714 (2017) 636 (https://doi.org/10.1016/j.jallcom.2017.04.231)

N. F. Kamaruzzaman, L. P. Tan, R. H. Hamdan, S. S. Choong, W. K. Wong, A. J. Gibson, A. Chivu, M. de F. Pina, Int. J. Mol. Sci. 20 (2019) 2747 (https://doi.org/10.3390/ijms20112747)

K. Jlassi, M. H. Sliem, F. M. Benslimane, N. O. Eltai, A. M. Abdullah, Prog. Org. Coat. 149 (2020) 105918 (https://doi.org/10.1016/j.porgcoat.2020.105918)

M. Wang, and T. Tang, J. Orthop. Transl. 17 (2019) 42 (https://doi.org/10.1016/j.jot.2018.09.001)

M. Maruthapandi, A. Saravanan, A. Gupta, J. H. T. Luong, A. Gedanken, Macromol. 2 (2022) 78 (https://doi.org/10.3390/macromol2010005)

B. Balasubramaniam, Prateek, S. Ranjan, M. Saraf, P. Kar, S. P. Singh, V. K. Thakur, A. Singh, R. K. Gupta, ACS Pharmacol. Transl. Sci. 4 (2021) 8 (https://doi.org/10.1021/acsptsci.0c00174)

M. Talikowska, X. Fu, G. Lisak, Biosens. Bioelectron. 135 (2019) 50 (https://doi.org/10.1016/j.bios.2019.04.001)

E. N. Zare, T. Agarwal, A. Zarepour, F. Pinelli, A. Zarrabi, F. Rossi, M. Ashrafizadeh, A. Maleki, M. Shahbazi, T. K. Maiti, R. S. Varma, F. R. Tay, M. R. Hamblin, V. Mattoli, P. Makvandi, Appl. Mater. Today 24 (2021) 101117 (https://doi.org/10.1016/j.apmt.2021.101117)

A. Singh, A. Goswami, S. Nain, Appl. Nanosci. 10 (2020) 2255 (https://doi.org/10.1007/s13204-020-01394-y)

M. Balaji, P. Nithya, A. Mayakrishnan, S. Jegatheeswaran, S. Selvam, Y. Cai, J. Yao, M. Sundrarajan, Appl. Surf. Sci. 510 (2020) 145403 (https://doi.org/10.1016/j.apsusc.2020.145403)

M. B. González, D. O. Flamini, L. I. Brugnoni, L. M. Quinzani S. B. Saidman, J. Water Health 16 (2018) 921 (https://doi.org/10.2166/wh.2018.072)

M. B. González, L. I. Brugnoni, D. O. Flamini, L. M. Quinzani, S. B. Saidman, Environ. Monit. Assess. 189 (2017) 53 (https://doi.org/10.1007/s10661-016-5764-7)

M. B. González, L. I. Brugnoni, M. E. Vela, S. B. Saidman, Electrochim. Acta 102 (2013) 66 (https://doi.org/10.1016/j.electacta.2013.03.116)

A. Martinez, L. Brugnoni, D. Flamini, S. Saidman, Prog. Org. Coat. 144 (2020) 105650 https://doi.org/10.1016/j.porgcoat.2020.105650

Y. Qing, L. Cheng, R, Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, L. Qin, Int. J. Nanomed. 13 (2018) 3311 (http://dx.doi.org/10.2147/IJN.S165125)

K. M. Rice, G. K. Ginjupalli, N. D. P. K. Manne, C. B. Jones, E. R. Blough, Nanotechnology 30 (2019) 372001 (https://doi.org/10.1088/1361-6528/ab0d38)

T. V. Basova, E. S. Vikulova, S. I. Dorovskikh, A. Hassan, N. B. Morozova, Mater. Des. 204 (2021) 109672 (https://doi.org/10.1016/j.matdes.2021.109672)

D. Mitra, E. T. Kang, K. G. Neoh, Appl. Mater. Interfaces 12 (2020) 21159 (https://doi.org/10.1021/acsami.9b17815)

I. Salah, I. P. Parkin, E. Allan, RSC Adv. 11 (2021) 18179 (https://doi.org/10.1039/D1RA02149D)

Y. Zhuang, S. Zhang, K. Yang, L. Ren, K. Dai, J. Biomed Mater. Res., B 108 (2020) 484 (https://doi.org/10.1002/jbm.b.34405)

P. L. Marucci, N. L. Olivera, L. I. Brugnoni, M. G. Sica, M. A. Cubitto, Environ. Monit. Assess. 175 (2011) 1 (https://doi.org/10.1007/s10661-010-1488-2)

A. Scheludko, M. Todorova, Bull. Acad. Bulg. Sci. Phys. 3 (1952) 61

A. W. Bauer, W. M. Kirby, J. C. Sherris, M. Turck, Am. J. Clin. Pathol. 45 (1966) 493

M. B. González, O. V. Quinzani, M. E. Vela, A. A. Rubert, G. Benítez, S. B. Saidman, Synth. Met. 162 (2012) 1133 (http://doi.org/10.1016/j.synthmet.2012.05.013)

A. Alqudami, S. Annapoorni, P. Sen, R. S. Rawat, Synth. Met. 157 (2007) 53 (http://doi.org/10.1016/j.synthmet.2006.12.006)

M. B. González, S. B. Saidman, Corros. Sci. 53 (2011) 276 (https://doi.org/10.1016/j.corsci.2010.09.021)

R. Holze Polymers 14 (2022) 1584 (https://doi.org/10.3390/polym1408158 4)

Q. Pei, R. Qian, Electrochim. Acta 37 (1992) 1075 (https://doi.org/10.1016/0013-4686(92)85225-A)

A. Singh, Z. Salmi, N. Joshi, P. Jha, A. Kumar, H. Lecoq, S. Lau, M. M. Chehimi, D. K. Aswal, S. K. Gupta, RSC Adv. 3 (2013) 5506 (https://doi.org/10.1039/C3RA22981E)

M. Diantoro, T. Suprayogi, U. Sa’adah, N. Mufti, A. Fuad, A. Hidayat, H. Nur, in Silver Nanoparticles, K. Maaz, Ed., InTech, Rijeka, 2018 (https://doi.org/10.5772/intechopen.75682)

K. F. Babu, P. Dhandapani, S. Maruthamuthu, M. A. Kulandainathan, Carbohydr. Polym. 90 (2012) 1557 (https://doi.org/10.1016/j.carbpol.2012.07.030)

N. Song, S. Chen, D. Tian, Y. Li, C. Wang, X. Lu, Mat. Today Chem. 18 (2020) 100374 (https://doi.org/10.1016/j.mtchem.2020.100374)

J. Shu, Z. Qiu, S. Lv, K. Zhang, D. Tang, Anal. Chem. 89 (2017) 11135 (https://doi.org/10.1021/acs.analchem.7b03491)

B. Chudasama, A. K. Vala, N. Andhariya, R. V. Mehta, R. V. Upadhyay, J. Nanopart. Res. 12 (2010) 1677 (https://doi.org/10.1007/s11051-009-9845-1)

J. S. Kim, E. Kuk, K. N. Yu, J. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Hwang, Y. Kim, Y. Lee, D. H. Jeong, M. Cho, Nanomed.: Nanotechnol. Biol. Med. 3 (2007) 95 (https://doi.org/10.1016/j.nano.2006.12.001)

J. Jain, S. Arora, J. M., P. Omray, S. Khandelwal, K. M. Paknikar, Mol. Pharm. 6 (2009)1388 (https://doi.org/10.1021/mp900056g)

J. P. Ruparelia, S. P. Duttagupta, A. K. Chatterjee, S. Mukherji, Acta Biomater. 4 (2008) 707 (https://doi.org/10.1016/j.actbio.2007.11.006)

D. Longano, N.Ditaranto, L. Sabbatini, L. Torsi, N. Cioffi, in Nano-Antimicrobials, N. Cioffi, M. Rai, Eds., Springer, Berlin, 2011, pp. 85–117 (https://doi.org/10.1007/978-3-642-24428-5_3)

G. A. Sotiriou, A. Meye, J. T. Knijnenburg, S. Panke, S. E. Pratsinis, Langmuir 28 (2012) 15929 (https://doi.org/10.1021/la303370d)

J. S. McQuillan, A. M. Shaw, Nanotoxicology 8 (2014) 177 (https://doi.org/10.3109/17435390.2013.870243)

I. P Mukha, A. M. Eremenko, N. P. Smirnova, A. I. Mikhienkova, G. I. Korchak, V. F. Gorchev, A. Y. Chunikhin, Appl. Biochem. Microbiol. 49 (2013) 199 (http://doi.org/10.1134/S0003683813020117)

Y. Dong, H. Zhu, Y. Shen, W. Zhang, L. Zhang, PLoS ONE 14 (2019) e0222322 (https://doi.org/10.1371/journal.pone.0222322)

M. Oves, M. A. Rauf , A. Hussain, H. A. Qari, A. A. P. Khan, P. Muhammad, M. T. Rehman, M. F. Alajmi, I. L. M. Ismail, Front. Pharmacol. 10 (2019) 801 (https://doi.org/10.3389/fphar.2019.00801)

J. R. Morones-Ramirez, J. A. Winkler, C. S. Spina, J. J. Collins. Sci. Transl. Med. 5 (2013) 190ra81 (https://doi.org/10.1126/scitranslmed.3006276.)

S. Khorrami, A. Zarrabi, M. Khaleghi, M. Danaei, M. R. Mozafari, Int. J. Nanomed. 13 (2018) 8013 (https://doi.org/10.2147/IJN.S189295)

G. Applerot, J. Lellouche, A. Lipovsky, Y. Nitzan, R. Lubart, A. Gedanken, E. Banin, Small 8 (2012) 3326 (https://doi.org/10.1002/smll.201200772)

L-U. Rahman, A. Shah, S. K. Lunsford , C. Han, M. N. Nadagoud , E. Sahle-Demessie , R. Qureshi , M. S. Khan, H-B Kraatz, D. D. Dionysiou. RSC Adv. 5 (2015) 44427 (https://doi.org/10.1039/C5RA03633J)

T. V. Basova, E. S. Vikulova, S. I. Dorovskikh, A. Hassan, N. B. Morozova, Mater. Des. 204 (2021) 109672 (https://doi.org/10.1016/j.matdes.2021.109672)

A. Mujeeb, N. A. Khan, F. Jamal, K. F. Badre Alam, H. Saeed, S. Kazmi, A.W.F.Alshameri, M. Kashif, I. Ghazi M. Owais, Front. Chem. 8 (2020) 103 (https://doi.org/10.3389/fchem.2020.00103).