Development of 2D and 3D QSAR models of pyrazole derivatives as acetylcholine esterase inhibitors

Main Article Content

Puja Mishra
https://orcid.org/0000-0002-8531-0942
Sumit Nandi
https://orcid.org/0009-0007-6358-441X
Ankit Chatterjee
Tridib Nayek
https://orcid.org/0009-0006-0698-4196
Souvik Basak
https://orcid.org/0000-0003-0380-6264
Amit Kumar Halder
https://orcid.org/0000-0002-4818-9047
Arup Mukherjee

Abstract

The drugs that are most useful in all stages of Alzheimer’s disease (AD) are acetylcholinesterase (AChE) inhibitors. The objectives of this work are to generate various QSAR models and to select robust predictive models from corresponding models. Studies were then focused on finding a range of pyrazole-like AChE inhibitors by 2D and 3D QSAR analysis. Genetic algorithm-based multiple linear regression (GA-MLR) provided the statistically robust 2D-QSAR model that depicted the significance of molecular volume and number of multiple bonds along with the presence/absence of specific atom-centred fragments and topological distance between 2D pharmacophoric features. Furthermore, these results were correlated well with the electrostatic and steric contour maps retrieved from the 3D-QSAR (i.e., alignment-dependent molecular field analysis). The 2D QSAR analysis developed a highly statistical and reliable model which was compared with the mechanistic interpretation of 3D structures and their electrostatic and steric field contributions leading to a predictive 3D QSAR model. The molecule-protein interactions elicited by molecular docking corroborated with the field interactions as revealed by 2D-QSAR. Thus, the developed computational models and simulation analyses in the current work provide valuable information for the future design of pyrazole and spiropyrazoline analogs as potent AChE inhibitors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
P. Mishra, “Development of 2D and 3D QSAR models of pyrazole derivatives as acetylcholine esterase inhibitors”, J. Serb. Chem. Soc., Mar. 2024.
Section
Organic Chemistry

References

M. Hernández-Rodríguez, J. Correa-Basurto, F. Martínez-Ramos, I. I. Padilla-Martínez, C. G. Benítez-Cardoza, E. Mera-Jiménez, & M. C. Rosales-Hernández, J. Alzheimer’s Dis. 41 (2014) 1073–1085 (https://doi.org/10.3233/JAD-140471)

S. Habtemariam, Molecules 24 (2019) 1519 (https://doi.org/10.3390/molecules24081519)

Y. Yamaguchi, H. Miyashita, H. Tsunekawa, A. Mouri, H. C. Kim, K. Saito, T. Matsuno, S. Kawashima, & T. Nabeshima, J. Pharmacol. Exp. Ther. 317 (2006) 1079–1087 (https://doi.org/10.1124/jpet.105.098640)

L. Lecanu, & V. Papadopoulos, Recent Pat. CNS Drug Discov. 2 (2007) 113–123 (https://doi.org/10.2174/157488907780832715)

T. Umar, S. Shalini, M. K. Raza, S. Gusain, J. Kumar, P. Seth, M. Tiwari, & N. Hoda, Eur. J. Med. Chem. 175 (2019) 2–19 (https://doi.org/10.1016/j.ejmech.2019.04.038)

B. Ahmad, M. S. Borana, & A. P. Chaudhary, Int. J. Biol. Macromol. 100 (2017) 89–96 (https://doi.org/10.1016/j.ijbiomac.2016.06.053)

Y. Liu, R. Dargusch, P. Maher, & D. Schubert, J. Neurochem. 105 (2008) 1336–1345 (https://doi.org/10.1111/j.1471-4159.2008.05236.x)

R. K. Giri, V. Rajagopal, & V. K. Kalra, J. Neurochem. 91 (2004) 1199–1210 (https://doi.org/10.1111/j.1471-4159.2004.02800.x)

H. Ramshini, M. mohammad-zadeh, & A. Ebrahim-Habibi, Int. J. Biol. Macromol. 78 (2015) 396–404 (https://doi.org/10.1016/j.ijbiomac.2015.04.038)

C. F. Lin, K. H. Yu, C. P. Jheng, R. Chung, & C. I. Lee, Pathogens 2 (2013) 506–519 (https://doi.org/10.3390/pathogens2030506)

R. Narlawar, K. Baumann, R. Schubenel, & B. Schmidt, Neurodegener. Dis. 4 (2007) 88–93 (https://doi.org/10.1159/000101832)

R. Narlawar, M. Pickhardt, S. Leuchtenberger, K. Baumann, S. Krause, T. Dyrks, S. Weggen, E. Mandelkow, & B. Schmidt, ChemMedChem 3 (2008) 165–172 (https://doi.org/10.1002/cmdc.200700218)

C. J. Hsieh, K. Xu, I. Lee, T. J. A. Graham, Z. Tu, D. Dhavale, P. Kotzbauer, & R. H. Mach, ACS Omega 3 (2018) 4486–4493 (https://doi.org/10.1021/acsomega.7b01897)

S. Ningaiah, U. K. Bhadraiah, S. D. Doddaramappa, S. Keshavamurthy, & C. Javarasetty, Bioorg. Med. Chem. Lett. 24 (2013) 245 (https://doi.org/10.1016/j.bmcl.2013.11.029)

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, & A. J. Olson, J. Comput Chem. 30 (2009) 2785 (https://doi.org/10.1002/jcc.21256)

S. Bansal, M. Bala, S. K. Suthar, S. Choudhary, S. Bhattacharya, V. Bhardwaj, S. Singla, & A. Joseph, Eur. J. Med. Chem. 80 (2014) 167–174 (https://doi.org/10.1016/j.ejmech.2014.04.045)

F. E. Boyer, J. V. N. Vara Prasad, A. L. Choy, L. Chupak, M. R. Dermyer, Q. Ding, M. D. Huband, W. Jiao, T. Kaneko, V. Khlebnikov, J. Y. Kim, M. S. Lall, S. N. Maiti, K. Romero, & X. Wu, Bioorganic Med. Chem. Lett. 17 (2007) 4694–4698 (https://doi.org/10.1016/j.bmcl.2007.05.056)

G. Gutti, D. Kumar, P. Paliwal, A. Ganeshpurkar, K. Lahre, A. Kumar, S. Krishnamurthy, & S. K. Singh, Bioorg. Chem. 90 (2019) 103080 (https://doi.org/10.1016/j.bioorg.2019.103080)

T. K. Shameera Ahamed, V. K. Rajan, & K. Muraleedharan, Food Sci. Hum. Wellness 8 (2019) 53–62 (https://doi.org/10.1016/j.fshw.2019.02.001)

H. Sugimoto, Pure Appl. Chem. 71 (2009) 2031–2037 (https://doi.org/10.1351/pac199971112031)

P. Mishra, S. Basak, A. Mukherjee, & A. Basu, Lett. Drug Des. Discov. 19 (2021) 192–213 (https://doi.org/10.2174/1570180818666210813120444).