Preventing hydrolysis of AlN powders with organophosphate coating in aqueous media Scientific paper

Main Article Content

Ceren Kaya
Oğuz Bayındır
Saruhan Saklar
Orhan Atakol
Hüseyin Çelikkan


The coating of aluminum nitride powder has a great import­ance ind­ustrially and environmentally. AlN can be rapidly hydrolyzed to alu­minum hydroxide and ammonia in the atmosphere or water media. To prevent the hyd­rolysis of AlN, the inorganic or organic based coatings are used fre­quently. For the first time, this study describes the phosphate esters as organo­phosphate coating used for the inhibition of hydrolysis reaction of AlN in its water sus­pension. Phenyl phosphate showed the best inhibition against AlN hydrolysis with an easy application technique and at low concentration of 0.005 M. AlN coating efficiency was proved by spectroscopic and imaging methods. It was concluded that the coating acquired the protective properties of phenyl phos­phate through its water repellence.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
C. Kaya, O. Bayındır, S. Saklar, O. Atakol, and H. Çelikkan, “Preventing hydrolysis of AlN powders with organophosphate coating in aqueous media: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 7-8, pp. 739–747, Aug. 2023.
Inorganic Chemistry
Author Biography

Hüseyin Çelikkan, Gazi University

Department of Chemistry

Science Faculty, Gazi University

Teknikokullar 06500


Funding data


L. M. Sheppard, Am. Ceram. Soc. Bull. 69 (1990) 1801

G. Hu, C. Q. Chen, K. T. Ramesh, J. W. McCauley, Acta Materialia 60 (2012) 3480 (

J. L. Qi, L. P. Wang, Y. Zhang, X. Guo, W. Yu, Q. Wang, K. Zhang, P. Ren, M. Wen, Surf. Coat. Technol. 405 (2021) 126724 (

Q. Wang, Y. Lu, S. Mishin, Y. Oshmyansky, D. A. Horsley, J. Microelectromechanical Syst. 26 (2017) 1132 (

S. Hao, L. Zhang, X. Wang, G. Zhao, P. Hou, X. Xu, Energy & Fuels 35 (2021) 12628 (

J. Li, M. Nakamura, T. Shirai, K. Matsumaru, C. Ishizaki, K. Ishizaki, J. Am. Ceram. Soc. 89 (2006) 937 (

A. Kocjan, A. Dakskobler, K. Krnel, T. Kosmač, J. Eur. Ceram. Soc. 31 (2011) 815 ( .

G. Long, L. M. Foster, J. Am. Ceram. Soc. 42 (1959) 53 (

H. Feng, G. Zhang, Q.. Yang, L. Xun, S. Zhen, D. Liu, Processes 8 (2020) 1269 (

M. Mahinroosta, A. Allahverdi, J. Environ. Manage. 223 (2018) 452 (

S. Fukumoto, T. Hookabe, H. Tsubakino, J. Materials Sci. 35 (2000), 2743 (

M. Oliveira, S. Olhero, J. Rocha, J. M. F. Ferreira, J. Colloid Interface Sci. 261 (2003), 456 (

R. Senthil Kumar, K. Rajeswari, B. Praveen, U. N. S. Hareesh, R. Johnson, J. Am. Ceram. Soc. 93 (2010) 429 (

Q. Wang, S. M. Olhero, J. M. F. Ferreira, W. Cui, K. Chen, Z. Xie, R. Riman, J. Am. Ceram. Soc. 96 (2013) 1383 (

Y. H. Koh, J. J. Choi, H. E. Kim, J. Am. Ceram. Soc. 83 (2000) 306 (

Y. Shimizu, J. Hatano, T. Hyodo, M. Egashira J. Am. Ceram. Soc. 83 (2000) 2793 (

S. Wildhack, G. Rixecker, F. Aldinger, J. Am. Ceram. Soc. 83 (2005) 2391 (

H. B. Shan, Y. Zhu, Z. T. Zhang, Br. Ceram. Trans. 98 (1999) 146 (

G. Yu, J. Xie, S. Wang, Y. Wang, T. Wang, L. Fan, L. Zhang, F. Lei, Y. Shi, L. Yu, Ceram. Int. 47 (2021) 29253 (

M. Egashira, Y. Shimizu, S. Takatsuki, J. Mater. Sci. Lett. 10 () 994 (

A. Kocjan, A. Dakskobler, T. Kosmac, Int. J. Appl. Ceram. Technol. 8 (2011) 853 (

R. S. Kumar, U. S. Hareesh, P. Ramavath, R. Johnson, Ceram. Int. 37 (2011) 2583 (