High cell density cultivation of Bacillus subtilis NCIM 2063: Modeling, optimization and a scale-up procedure Scientific paper

Main Article Content

Sandra Stamenković Stojanović
https://orcid.org/0000-0001-6706-9318
Ivana Karabegović
https://orcid.org/0000-0003-2191-4082
Bojana Danilović
Stojan Mančić
https://orcid.org/0000-0001-9952-1575
Miodrag Lazić
https://orcid.org/0000-0002-6634-7686

Abstract

Bacillus subtilis is a non-pathogenic, sporulating, Gram-positive bac­teria with pronounced antimicrobial and metabolic activity and great potential for wide application in various fields. The aim of this paper was to determine the optimum B. subtilis NCIM 2063 growth conditions and to scale up biomass production from shake flasks to a bioreactor level. The critical growth para­meters and their interaction effects were studied using Box–Behnken experi­mental design and response surface methodology. Developed model equations were statistically significant with good prediction capability. It was found that during shake flask cultivation glucose should be added in concentration up to 5 g L-1 in DSM medium, OTR at 10 mol m-3 h-1 and temperature of 33 °C, to achieve the maximum number of viable cells and spores. To scale up the pro­cess from shake flasks to the bioreactor level kLa was used as a main criterion. Scale up effect was evaluated by comparing the growth kinetics in the shake flasks and in a laboratory bioreactor. The total number of cells obtained in the bioreactor was 4.57´109 CFU mL-1 which is 1.41 times higher than the number of cells in the shake flasks (3.24´109 CFU mL-1), proving that the scale-up procedure was conducted successfully.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Stamenković Stojanović, I. . Karabegović, B. . Danilović, S. Mančić, and M. . Lazić, “High cell density cultivation of Bacillus subtilis NCIM 2063: Modeling, optimization and a scale-up procedure: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 11, pp. 1103–1117, Nov. 2023.
Section
Biochemistry & Biotechnology

Funding data

References

S. Shahcheraghi, J. Ayatollahi, M. Lotfi, Tropical J. Med. Res. 18 (2015) 1 (http://dx.doi.org/10.4103/1119-0388.152530)

P. Garcia-Fraile, E. Menendez, R. Rivas, AIMS Bioeng. 2 (2015) 183 (http://dx.doi.org/10.3934/bioeng.2015.3.183)

J. Shafi, H. Tian, M. Ji, Bioteh. Bioteh. Equip. 31 (2017) 446 (http://dx.doi.org/10.1080/13102818.2017.1286950)

H. Hamdi, A. Hellal, J. Serb. Chem. Soc. 84 (2019) 679 (http://dx.doi.org/10.2298/JSC181204022H)

N. Akcan, B. Serin, F. Uyar, Chem. Biochem. Eng. Q. 26 (2012) 233 (https://hrcak.srce.hr/87357)

H. Wang, Y. Wang, R. Yang, Appl. Microbiol. Biotechnol. 101 (2017) 933 (http://dx.doi.org/10.1007/s00253-016-8080-9)

N. Božić, J. Ruiz, J. López-Santín, Z. Vujčić, J. Serb. Chem. Soc. 76 (2011) 965 (https://doi.org/10.2298/JSC101010098B)

A. Cagri-Mehmetoglu, S. Kusakli, M. van de Venter, J. Dairy Sci. 95 (2012) 3643 (https://dx.doi.org/10.3168/jds.2012-5385)

N. Haddad, X. Liu, S. Yang, B. Mu, Protein Pept. Lett. 15 (2008) 265 (https://doi.org/10.2174/092986609787049358)

V. K. Vaithyanathan, H. Cabana, V. K. Vaidyanathan, Chem. Eng. J. 419 (2021) 129966 (https://doi.org/10.1016/j.cej.2021.129966)

K. S. Ahmad, Folia Microbiol. (Praha) 65 (2020) 801 (https://doi.org/10.1007/s12223-020-00792-7)

H. Zhao, D. Shao, C. Jiang, J. Shi, Q. Li, Q. Huang, M. S. R. Rajoka, H. Yang, M. Jin, Appl. Microbiol. Biotechnol. 101 (2017) 5951 (http://dx.doi.org/10.1007/s12275-014-3354-3)

A. K. Das, V. Mandal, S. C. Mandal, Phytochem. Anal. 25 (2014) 1 (http://dx.doi.org/10.1002/pca.2465)

A.-I. Galaction, C. Oniscu, D. Cascaval, Hem. Ind. 57 (2003) 276 (http://dx.doi.org/10.2298/HEMIND0306276G)

S. Stamenković, V. Beškoski, I. Karabegović, M. Lazić, N. Nikolić, Span. J. Agric. Res. 16 (2018) e09R01 (http://dx.doi.org/10.5424/sjar/2018161-12117)

P. M. Doran, Bioprocess engineering principles: Second edition, Academic Press, London, 2013, ISBN 0-12-220855-2

F. Garcia-Ochoa, E. Gomez, Biotechnol. Adv. 27 (2009) 153 (http://dx.doi.org/10.1016/j.biotechadv.2008.10.006)

S. Suresh, V. C. Srivastava, I. M. Mishra, Crit. Rev. Biotechnol. 29 (2009) 255 (http://dx.doi.org/10.1002/jctb.2154)

M. A. Trujillo-Roldán, N. A. Valdez-Cruz, C. F. Gonzalez-Monterrubio, E. V. Acevedo-

-Sánchez, C. Martínez-Salinas, R. I. García-Cabrera, R. A. Gamboa-Suasnavart, L. D. Marín-Palacio, J. Villegas, A. Blancas-Cabrera, Appl. Microbiol. Biotechnol. 97 (2013) 9665 (http://dx.doi.org/10.1007/s00253-013-5199-9)

K. Meier, W. Klöckner, B. Bonhage, E. Antonov, L. Regestein, J. Büchs, Biochem. Eng. J. 109 (2016) 228 (http://dx.doi.org/10.1016/J.BEJ.2016.01.014)

Monteiro, J. J. Clemente, M. J. T. Carrondo, A. E. Cunha, Adv. Microbiol. 4 (2014) 444 (http://dx.doi.org/10.4236/aim.2014.48049)

M. B. Tavares, R. D. Souza, W. B. Luiz, R. C. M. Cavalcante, C. Casaroli, E. G. Martins, R. C. C. Ferreira, L. C. S. Ferreira, Curr. Microbiol. 66 (2013) 279 (http://dx.doi.org/10.1007/s00284-012-0269-2)

D. H. Green, P. R. Wakeley, A. Page, A. Barnes, L. Baccigalupi, E. Ricca, S. M. Cutting, Appl .Environ. Microbiol. 65 (1999) 4288 (https://doi.org/10.1128/AEM.65.9.4288-4291.1999)

M. Karava, F. Bracharz, J. Kabisch, PLoS One 14 (2019) e0219892 (https://doi.org/10.1371/journal.pone.0219892)

L. Li, J. Jin, H. Hu, I. F. Deveau, S. L. Foley, H. Chen, J. Ind. Microbiol. Biotechnol. 49 (2022) 14 (https://doi.org/ 10.1093/jimb/kuac014)

M. M. Nakano, F. M. Hulett, FEMS Microbiol. Lett. 157 (2006) 1 (http://dx.doi.org/10.1111/j.1574-6968.1997.tb12744.x)

S. Stamenkovic-Stojanovic, I. Karabegovic, V. Beskoski, N. Nikolic, M. Lazic, Hem. Ind. 73 (2019) 169 (http://dx.doi.org/10.2298/HEMIND190214014S)

S. M. Monteiro, J. J. Clemente, A. O. Henriques, R. J. Gomes, M. J. Carrondo, A. E. Cunha, Biotechnol. Prog. 21 (2005) 1026 (http://dx.doi.org/10.1021/bp050062z)

V. B. Veljković, S. Nikolić, M. L. Lazić, C. R. Engler, Hem. Ind. 49 (1995) 265 (https://www.researchgate.net/publication/259619801_Oxygen_transfer_in_flasks_shaken_on_orbital_shakers)

V. B. Veljković, Fundamentals of biochemical engineering, University of Niš, Leskovac, 1994, ISBN 86-82-367-01-07 in Serbian

D. Baş, İ. H. Boyacı, J. Food Eng. 78 (2007) 836 (http://dx.doi.org/10.1016/j.jfoodeng.2005.11.024)

R. Sen, K. S. Babu, Proc. Biochem. 40 (2005) 2531 (https://doi.org/10.1016/j.procbio.2004.11.004)

M. H. Sarrafzadeh, S. Schorr-Galindo, H.-J. La, H.-M. Oh, J. Microbiol. 52 (2014) 597 (http://dx.doi.org/10.1007/s12275-014-3547-9)

T. Khardziani, E. Kachlishvili, K. Sokhadze, V. Elisashvili, R. Weeks, M. L. Chikindas, V. Chistyakov, Probiotics Antimicrob. Proteins 9 (2017) 435 (http://dx.doi.org/10.1007/s12602-017-9303-9)

W. Abhyankar, A. Ter Beek, H. Dekker, R. Kort, S. Brul, C. G. de Koster, Proteomics 11 (2011) 4541 (http://dx.doi.org/10.1002/pmic.201100003)

N. Q. Anh, PhD Thesis, Universität Bayreuth, Bayreuth, 2010 (https://nbn-resolving.org/urn:nbn:de:bvb:703-opus-8418)

S.-W. Cheng, Y.-F. Wang, F.-F. Liu Chem. Biochem. Eng. Q. 25 (2011) 377 (http://silverstripe.fkit.hr/cabeq/assets/Uploads/Cabeq-2011-03-12.pdf)

J.-H. Cho, Y.-B. Kim, E.-K. Kim, Korean J. Chem. Eng. 26 (2009) 754 (http://dx.doi.org/10.1007/s11814-009-0126-6)

J. S. Eswari, M. Anand, C. Venkateswarlu, Sãdhanã 41 (2016) 55 (http://dx.doi.org/10.1007/s12046-015-0451-x)

K. Singh, K. Richa, H. Bose, L. Karthik, G. Kumar, K. V. Bhaskara Rao, Appl. Biochem. Biotechnol. 4 (2014) 591 (http://dx.doi.org/10.1007/s12010-008-8180-9)

L. F. Posada-Uribe, M. Romero-Tabarez, V. Villegas-Escobar, Bioprocess Biosys. Eng. 38 (2015) 1879 (https://doi.org/10.1007/s00449-015-1428-1)

S. W. Pryor, D. M. Gibson, A. G. Hay, J. M. Gossett, L. P. Walker, Appl. Biochem. Biotechnol. 143 (2007) 63 (https://doi.org/10.1007/s12010-007-0036-1)

R. Petříček, T. Moucha, F. J. Rejl, L. Valenz, J. Haidl, T. Čmelíková, Int. J. Heat Mass Transf. 124 (2018) 1117 (http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.045)

K. Limpaiboon, Walailak J. Sci. Technol. 10 (2013) 625 (https://wjst.wu.ac.th/index.php/wjst/article/view/472)

S. Suresh, V. C. Srivastava, I. M. Mishra, J. Chem. Technol. Biotechnol. 84 (2009) 1091 (http://dx.doi.org/10.1002/jctb.2154)

V. B. Shukla, U. Parasu Veera, P. R. Kulkarni, A. B. Pandit, Biochem. Eng. J. 8 (2001) 19 (http://dx.doi.org/10.1016/S1369-703X(00)00130-3)

J. M. Seletzky, U. Noak, J. Fricke, E. Welk, W. Eberhard, C. Knocke, J. Büchs, Biotechnol. Bioeng. 98 (2007) 800 (http://dx.doi.org/10.1002/bit.21359).