A DFT study of the chemical bonding properties, aromaticity indexes and molecular docking study of some phenylureas herbicides Scientific paper

Main Article Content

Laib Souhila
https://orcid.org/0000-0003-1929-4435
Saad Bouchekioua
https://orcid.org/0000-0001-7244-9614
Rafik Menacer
https://orcid.org/0000-0002-3742-8727

Abstract

Herbicides have imposed disastrous consequences towards the envir­onment and human health. This practice urges scientists to investigate the physical, chemical and biological properties of these substances to avoid the use of the most harmful pesticides. For this purpose, the molecular structure and chemical bonding properties of phenylurea herbicides namely: fenuron (L1), monuron (L2), diuron (L3) and chlorotoluron (L4), were calculated in water, using density functional theory (DFT). The energy decomposition analy­sis (EDA) and the extended transition state natural orbitals for chemical valence (ETS-NOCV) reveal the dominant ionic character in carbon–nitrogen bond between dimethylurea fragment and benzene ring. Besides, the interaction of these herbicides with the human serum albumin (HSA) was undertaken by molecular modeling. The calculation of HOMA and FLU indexes indicate that the electronic delocalization is stronger in diuron than the other compounds, mainly caused by the two chloro substituents effects on benzene. Good correl­ations are found between the calculated parameters such as structural parameters, Mulliken atomic charge, topological and bonding properties and aromaticity indexes. The Vinardo molecular docking results suggest that the binding energies of the complexes formed between HSA target and investigated com­pounds have the following order: L3 (–27.57 kJ/mol) < L2 (–25.56 kJ/mol) < L4 (–24.94 kJ/mol) < L1 (–24.10 kJ/mol), which confirmed that the Fenuron is the less harmful option between the studied herbicides especially against HSA.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
L. Souhila, S. Bouchekioua, and R. Menacer, “A DFT study of the chemical bonding properties, aromaticity indexes and molecular docking study of some phenylureas herbicides: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 9, pp. 1165–1176, Sep. 2024.
Section
Theoretical Chemistry

Funding data

References

P. N. Stamati, S. Maipas, C. Kotampasi, P. Stamatis, L. Hens, Front. Public Health 4 (2016) 1 (https://doi.org/10.3389/fpubh.2016.00148)

H. Mountacer, L. Tajeddine, M. Sarakha, Herbicides and Environment, Intech, Rijeka, 2011 (ISBN 978-953-307-476-4)

R. Kebeish, E. Azab, C. Peterhaensel, R. El-Basheer, Environ. Sci. Pollut. Res. Int. 21 (2014) 8224 (https://doi.org/10.1007/s11356-014-2710-5)

J. Jinhoon, K. Sanjida, M. Youngkook, S. Sooim, O.R. Lee, Appl. Biol. Chem. 63 (2020) 1 (https://doi.org/10.1186/s13765-020-00498-x)

T. Vrabelj, M. Finšgar, Biosensors 12 (2022) 263 (https://doi.org/10.3390/bios12050263)

F. J. Benitez, C. Garcia, J. L. Acero, F. J. Real, World Acad. Sci. Eng. Technol. 34 (2009) 673 (https://doi.org/10.5281/zenodo.1078350)

A. Bautista, J. J. Aaron, M. C. Mahedero and A. Muñoz de la Peña, Analysis 27 (1999) 857 (https://doi.org/10.1051/analusis:1999154)

V. Mile, I. Harsányi, K. Kovács, T. Földes, E. Takács, L. Wojnárovits, Radiat. Phys. Chem. 132 (2017) 16 (https://doi.org/10.1016/j.radphyschem.2016.11.003)

H. Chen, H. Rao, J. Yang, Y. Qiao, J. Yao, J. Environ. Sci. Health., B 51 (2016) 154 (https://doi.org/10.1080/03601234.2015.1108800)

K. Haruna, S. Veena, Y. Kumar, S. A. Sheena Mary, P. R. Thomas, M. S. Roxy, A. A. Al-Saadi, Heliyon 5 (2019) E01987 (https://doi.org/10.1016/j.heliyon.2019.e01987)

L. Humberto, M. Huizar, J. Chem. (2015) 751527 (https://doi.org/10.1155/2015/751527)

F. Zhang, B. Liu, G. Liu, Y. Zhang, J. Wang, S. Wang, Sci. Rep. 8 (2018) 3131 (https://doi.org/10.1038/s41598-018-21394-x)

A. A. Buglak, A. V. Zherdev, H.-T. Lei, B. B. Dzantiev, Plos One 14 (2019) e0214879 (https://doi.org/10.1371/journal.pone.0214879)

Gaussian 09, Gaussian Inc, Wallingford, CT, 2009

A. D. Becke, J. Chem. Phys. 98 (1933) 5648 (https://doi.org/10.1063/1.464913)

A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)

C. Lee, W. Yang, and R. G. Parr, Physical Review. B 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

F. M. Bickelhaupt, E. J. Baerends, Reviews in computational chemistry, K. B. Lipkowitz, D. B. Boyd, Eds., Wiley-VCH, New York, 2000, pp. 1–86 (https://doi.org/10.1002/9780470125922.ch1)

T. Ziegler, A. Rauk, Inorg. Chem. 18 (1979) 1558 (https://doi.org/10.1021/ic50196a034)

K. B. Wiberg, Tetrahedron 24 (1968) 1083 (https://doi.org/10.1016/0040-4020(68)88057-3)

M. Kohout, Program DGrid, version 4.3, 2008

Chemcraft, Release 1.4 (http://www.chemcraftprog.com)

J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 13 (1972) 3839 (https://doi.org/10.1016/S0040-4039(01)94175-9)

T. M. Krygowski, J. Chem. Inf. Comp. Sci. 33 (1993) 70 (https://doi.org/10.1021/ci00011a011)

E. Matito, M. Duran, M. Sola, J. Chem. Phys. 122 (2005) (https://doi.org/10.1063/1.1824895)

I. Petitpas, A. A. Bhattacharya, S. Twine, M. East, S. Curry, J. Biol. Chem. 276 (2001) 22804 (https://doi.org/10.1074/jbc.M100575200)

G. Sudlow, D. J. Birkett, Mol. Pharmacol. 12 (1976) 1052

Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, release 2017, Dassault Systèmes, San Diego, CA, 2017

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 30 (2009) 2785 (https://doi.org/10.1002/jcc.21256)

R. Quiroga, M. A. Villarreal, Plos One 11(2016) e0155183 (https://doi.org/10.1371/journal.pone.0155183)

T. Andrew, Mc. Nutt, P. Francoeur, R. Aggarwal, T. Masuda, R. Meli, M. Ragoza, J. Sunseri, D. R. Koes, J. Cheminform. 13 (2021) (https://doi.org/10.1186/s13321-021-00522-2)

T. Gaillard, J. Chem. Inf. Model. (2018) (https://doi.org/10.1021/acs.jcim.8b00312)

D. R. Koes, M. P. Baumgartner, C. J. Camacho, J. Chem. Inf. Model. 53 (2013) 1893 (https://doi.org/10.1021/ci300604z)

O. Trott, A. J. Olson, J. Comput. Chem. 31 (2010) 455 (https://doi.org/10.1002/jcc.21334)

N. Kerru, L. Gummidi, S. V. H. S. Bhaskaruni, S. N. Maddila, P. Singh, B. S. Jonnalagadda, Sci. Rep. 9 (2019) 1 (https://doi.org/10.1038/s41598-019-55793-5)

P. Su, Z. Chen, W. Wu, Chem. Phys. Lett. 635 (2015) 250 (https://doi.org/10.1016/j.cplett.2015.06.078)

K. Shyan, A. Nowroozi, Struct. Chem. 27 (2016) 1769 (https://doi.org/10.1007/s11224-016-0796-8)

S. J. Grabowski, Mol. Struct. 553 (2000) 151 (https://doi.org/10.1016/S0022-2860(00)00576-7)

E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO, version 3.1

S. J. Grabowski, Phys. Chem. 102 (2006) 131 (https://doi.org/10.1039/B417200K)

S. Emamian, S. F. Tayyari, J. Chem. Sci. 125 (2013) 939 (https://doi.org/10.1007/s12039-013-0466-y)

G. Mahmoudzadeh, Int. J. New. Chem. 8 (2021) 277 (https://doi.org/10.22034/ijnc.2020.122797.1101)

J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, G. S. Waldo, Nat. Biotechnol. 24 (2006) 79 (https://doi.org/10.1038/nbt1172)

P. V. R. Schleyer, Chem. Rev. 101 (2001) 1115 (https://doi.org/10.1021/cr0103221)

M. K. Cyrañski, Z. Czarnocki, G. Häfelinger, A. R. Katritzky, Tetrahedron 56 (2000) 1783 (https://doi.org/10.1016/S0040-4020(99)00979-5)

J. Poater, M. Duran, M. Solà, B. Silvi, Chem. Rev. 105 (2005) 3911 (https://doi.org/10.1021/cr030085x)

Y. Chen, Y. Zhou, Mo. Chen, B. Xie, J. Yang, J. Chen, Z. Sun, Food Chem. 258 (2018) 393 (https://doi.org/10.1016/j.foodchem.2018.02.105)

H. Xia, Q. Sun, N. Gan, P. Ai, H. Li, Y. Li, RSC Adv. 13 (2023) 8281 (https://doi.org/10.1039/d2ra07377c)

H. Zhang, R. Cai, C. Chen, L. Gao, P. Ding, L. Dai, B. Chi, Int. J. Mol. Sci. 24 (2023) 13281 (https://doi.org/10.3390/ijms241713281)

A. Mahboob, Molecules 28 (2023) 5942 (https://doi.org/10.3390/molecules28165942).