Characterization of enalapril maleate: An approach using thermoanalytical, thermokinetic and spectroscopic techniques

Main Article Content

José Augusto Teixeira
Adrian Santos de Souza
https://orcid.org/0009-0002-4230-8006
Laís da Silva Mendoza Kardek de Melo
Tiago André Denck Colman
https://orcid.org/0000-0003-1405-4571

Abstract

Enalapril maleate is a widely used drug for the treatment of cardiovascular diseases. Its mechanism of action is to inhibit the angiotensin-converting enzyme selectively. Therefore, it is metabolized to enalaprilat by liver cells. The thermal behavior of enalapril maleate was investigated by simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), and evolved gas analysis by simultaneous thermogravimetry and differential scanning calorimetry coupled infrared spectroscopy (TG-DSC-FTIR). The results provided information on thermal stability, purity, thermal decomposition steps, and the main products formed in the heating. The enalapril maleate was found to be stable up to 148 °C. Above this temperature causes thermal degradation of the substance, which occurs in two stages in an inert atmosphere (N2) and three stages in an oxidizing atmosphere (air). Through the TG-DSC-FTIR  the released gases were identified as maleic anhydride as a thermal decomposition intermediate. DSC analysis showed that the material obtained 99.5% purity, which indicates high purity. Employing both the Kissinger and Friedman equations, alongside Model Fitting methods, the study reveals key insights. The Kissinger method unveils an apparent activation energy of 47.07±15.45 kJ mol⁻¹ for the complete thermal breakdown, a finding corroborated by the Friedman method.  Model Fitting methods, the article applies them, yielding an apparent activation energy of 55.70±3.4 kJ mol⁻¹ with a three-dimensional diffusion thermal degradation model.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. Augusto Teixeira, A. Santos de Souza, L. da Silva Mendoza Kardek de Melo, and T. A. Denck Colman, “Characterization of enalapril maleate: An approach using thermoanalytical, thermokinetic and spectroscopic techniques”, J. Serb. Chem. Soc., Aug. 2024.
Section
Analytical Chemistry

References

G. S. Thind, A. Johnson, D. Bhatnagar, T. W. Henkel, Am. Heart J. 109 (1985) 852–858 (https://doi.org/10.1016/0002-8703(85)90650-7)

R. Kello, W. Abdelwahed, DESIGHN AND EVALUATION OF A NEW FORMULATIONS OF ENALAPRIL MALEATE 20 MG TABLET IN A TIME EFFICIENT AND ON A LARGE INDUSTRIAL SCALE, in 2014 (https://api.semanticscholar.org/CorpusID:51815722)

R. K. Verbeeck, I. Kanfer, R. Löbenberg, B. Abrahamsson, R. Cristofoletti, D. W. Groot, P. Langguth, J. E. Polli, A. Parr, V. P. Shah, M. Mehta, J. B. Dressman, J. Pharm. Sci. 106 (2017) 1933-1943 (https://doi.org/10.1016/j.xphs.2017.04.019)

S. P. Bhardwaj, S. Singh, J. Pharm. Biomed. Anal. 46 (2008) 113–120 (https://doi.org/10.1016/j.jpba.2007.09.014)

M. De Diego, S. Mennickent, G. Godoy, V. Miranda, Curr. Pharm. Anal. 7 (2011) 248–252 (https://doi.org/10.2174/157341211797458005)

D. M. Lima, L. D. dos Santos, E. M. Lima, J. Pharm. Biomed. Anal. 47 (2008) 934 - 937 (https://doi.org/10.1016/j.jpba.2008.02.030)

B. Stanisz, J Pharm Biomed Anal 31 (2003) 375–380 (https://doi.org/10.1016/S0731-7085(02)00325-4)

B. Stanisz, Acta Pol Pharm 61 (2004) 415–8 (https://pubmed.ncbi.nlm.nih.gov/15794332)

M. Juhász, Y. Kitahara, S. Takahashi, T. Fujii, J. Pharm. Biomed. Anal. 59 (2012) 190–193 (https://doi.org/10.1016/j.jpba.2011.10.011)

F. Q. Pires, T. Angelo, J. K. R. Silva, L. C. L. Sá-Barreto, E. M. Lima, G. M. Gelfuso, T. Gratieri, M. S. S. Cunha-Filho, J. Pharm. Biomed. Anal. 137 (2017) 196–203 (https://doi.org/10.1016/j.jpba.2017.01.037)

M. Herbrink, H. Vromans, J. Schellens, J. Beijnen, B. Nuijen, J. Pharm. Biomed. Anal. 148 (2018) 182–188 (https://doi.org/10.1016/j.jpba.2017.10.001)

A. K. Attia, M. M. Abdel-Moety, S. G. Abdel-Hamid, Arab. J. Chem. 10 (2017) S334–S338 (https://doi.org/10.1016/j.arabjc.2012.08.006)

A. Raw, M. S. Furness, D. S. Gill, R. C. Adams, F. O. Holcombe Jr., L. X. Yu, Adv. Drug Deliv. Rev. 56 (2004) 397–414 (https://doi.org/10.1016/j.addr.2003.10.011)

F. X. Campos, A. L. C. S. Nascimento, T. A. D. Colman, D. A. Gálico, O. Treu-Filho, F. J. Caires, A. B. Siqueira, M. Ionashiro, J. Therm. Anal. Calorim. 123 (2016) 91–103 (https://doi.org/10.1007/s10973-015-4956-7)

J. A. Teixeira, W. D. G. Nunes, T. A. D. Colman, A. L. C. S. do Nascimento, F. J. Caires, F. X. Campos, D. A. Gálico, M. Ionashiro, Thermochim. Acta 624 (2016) 59–68 (https://doi.org/10.1016/j.tca.2015.11.023)

M. D. Colman, S. R. da S. Lazzarotto, M. Lazzarotto, F. A. Hansel, T. A. D. Colman, E. Schnitzler, J. Anal. Appl. Pyrolysis 119 (2016) 157–161 (https://doi.org/10.1016/j.jaap.2016.03.005)

A. ASTM, ASTM International: West Conshohocken, ASTM E698-05, PA, USA (2005) (https://www.astm.org/e0698-05.html)

S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1–19 (https://doi.org/10.1016/j.tca.2011.03.034)

S. Vyazovkin, A. K. Burnham, L. Favergeon, N. Koga, E. Moukhina, L. A. Pérez-Maqueda, N. Sbirrazzuoli, Thermochim. Acta 689 (2020) 178597 (https://doi.org/10.1016/j.tca.2020.178597)

J. R. MacCallum, J. Tanner, Eur. Polym. J. 6 (1970) 1033–1039 (https://doi.org/10.1016/0014-3057(70)90035-2)

N. V. Muravyev, A. N. Pivkina, N. Koga, Molecules 24 (2019) 2298 (https://doi.org/10.3390/molecules24122298)

B. Androsits, J. Therm. Anal. Calorim. 55 (1999) 1041 (https://doi.org/10.1023/A:1010123009883)

H. L. Friedman, J. Polym. Sci. Part C: Polymer Symposia 6 (1964) 183–195 (https://doi.org/10.1002/polc.5070060121)

S. Vyazovkin, Molecules 25 (2020) 2813 (https://doi.org/10.3390/molecules25122813)

L. A. Pérez-Maqueda, J. M. Criado, P. E. Sánchez-Jiménez, J. Phys. Chem. A 110 (2006) 12456–12462 (https://doi.org/10.1021/jp064792g)

A. Soria-Verdugo, E. Goos, N. García-Hernando, U. Riedel, Algal Res. 32 (2018) 11–29 (https://doi.org/10.1016/j.algal.2018.03.005)

A. K. Burnham, L. N. Dinh, J. Therm. Anal. Calorim. 89 (2007) 479–490 (https://doi.org/10.1007/s10973-006-8486-1)

M. Heydari, M. Rahman, R. Gupta, Int. J. Chem. Eng. 2015 (2015) 1–9 (https://doi.org/10.1155/2015/481739)

H. Mahmood, A. Shakeel, A. Abdullah, M. Khan, M. Moniruzzaman, Polymers (Basel) 13 (2021) 2504 (https://doi.org/10.3390/polym13152504)

A. Agić, E. G. Bajsić, J Appl Polym Sci 103 (2007) 764–772 (https://doi.org/10.1002/app.25040)

N. A. Mariano, M. A. G. Tommaselli, S. E. Kuri, Materwiss. Werksttech. 36 (2005) 325–330 (https://doi.org/10.1002/mawe.200500877)

Most read articles by the same author(s)