Characterization of enalapril maleate: An approach using thermoanalytical, thermokinetic and spectroscopic techniques
Main Article Content
Abstract
Enalapril maleate is a widely used drug for the treatment of cardiovascular diseases. Its mechanism of action is to inhibit the angiotensin-converting enzyme selectively. Therefore, it is metabolized to enalaprilat by liver cells. The thermal behavior of enalapril maleate was investigated by simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), and evolved gas analysis by simultaneous thermogravimetry and differential scanning calorimetry coupled infrared spectroscopy (TG-DSC-FTIR). The results provided information on thermal stability, purity, thermal decomposition steps, and the main products formed in the heating. The enalapril maleate was found to be stable up to 148 °C. Above this temperature causes thermal degradation of the substance, which occurs in two stages in an inert atmosphere (N2) and three stages in an oxidizing atmosphere (air). Through the TG-DSC-FTIR the released gases were identified as maleic anhydride as a thermal decomposition intermediate. DSC analysis showed that the material obtained 99.5% purity, which indicates high purity. Employing both the Kissinger and Friedman equations, alongside Model Fitting methods, the study reveals key insights. The Kissinger method unveils an apparent activation energy of 47.07±15.45 kJ mol⁻¹ for the complete thermal breakdown, a finding corroborated by the Friedman method. Model Fitting methods, the article applies them, yielding an apparent activation energy of 55.70±3.4 kJ mol⁻¹ with a three-dimensional diffusion thermal degradation model.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 402435/2022-2 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 200114/2022-0 -
Financiadora de Estudos e Projetos
Grant numbers 04.13.0448.00/2013
References
G. S. Thind, A. Johnson, D. Bhatnagar, T. W. Henkel, Am. Heart J. 109 (1985) 852–858 (https://doi.org/10.1016/0002-8703(85)90650-7)
R. Kello, W. Abdelwahed, DESIGHN AND EVALUATION OF A NEW FORMULATIONS OF ENALAPRIL MALEATE 20 MG TABLET IN A TIME EFFICIENT AND ON A LARGE INDUSTRIAL SCALE, in 2014 (https://api.semanticscholar.org/CorpusID:51815722)
R. K. Verbeeck, I. Kanfer, R. Löbenberg, B. Abrahamsson, R. Cristofoletti, D. W. Groot, P. Langguth, J. E. Polli, A. Parr, V. P. Shah, M. Mehta, J. B. Dressman, J. Pharm. Sci. 106 (2017) 1933-1943 (https://doi.org/10.1016/j.xphs.2017.04.019)
S. P. Bhardwaj, S. Singh, J. Pharm. Biomed. Anal. 46 (2008) 113–120 (https://doi.org/10.1016/j.jpba.2007.09.014)
M. De Diego, S. Mennickent, G. Godoy, V. Miranda, Curr. Pharm. Anal. 7 (2011) 248–252 (https://doi.org/10.2174/157341211797458005)
D. M. Lima, L. D. dos Santos, E. M. Lima, J. Pharm. Biomed. Anal. 47 (2008) 934 - 937 (https://doi.org/10.1016/j.jpba.2008.02.030)
B. Stanisz, J Pharm Biomed Anal 31 (2003) 375–380 (https://doi.org/10.1016/S0731-7085(02)00325-4)
B. Stanisz, Acta Pol Pharm 61 (2004) 415–8 (https://pubmed.ncbi.nlm.nih.gov/15794332)
M. Juhász, Y. Kitahara, S. Takahashi, T. Fujii, J. Pharm. Biomed. Anal. 59 (2012) 190–193 (https://doi.org/10.1016/j.jpba.2011.10.011)
F. Q. Pires, T. Angelo, J. K. R. Silva, L. C. L. Sá-Barreto, E. M. Lima, G. M. Gelfuso, T. Gratieri, M. S. S. Cunha-Filho, J. Pharm. Biomed. Anal. 137 (2017) 196–203 (https://doi.org/10.1016/j.jpba.2017.01.037)
M. Herbrink, H. Vromans, J. Schellens, J. Beijnen, B. Nuijen, J. Pharm. Biomed. Anal. 148 (2018) 182–188 (https://doi.org/10.1016/j.jpba.2017.10.001)
A. K. Attia, M. M. Abdel-Moety, S. G. Abdel-Hamid, Arab. J. Chem. 10 (2017) S334–S338 (https://doi.org/10.1016/j.arabjc.2012.08.006)
A. Raw, M. S. Furness, D. S. Gill, R. C. Adams, F. O. Holcombe Jr., L. X. Yu, Adv. Drug Deliv. Rev. 56 (2004) 397–414 (https://doi.org/10.1016/j.addr.2003.10.011)
F. X. Campos, A. L. C. S. Nascimento, T. A. D. Colman, D. A. Gálico, O. Treu-Filho, F. J. Caires, A. B. Siqueira, M. Ionashiro, J. Therm. Anal. Calorim. 123 (2016) 91–103 (https://doi.org/10.1007/s10973-015-4956-7)
J. A. Teixeira, W. D. G. Nunes, T. A. D. Colman, A. L. C. S. do Nascimento, F. J. Caires, F. X. Campos, D. A. Gálico, M. Ionashiro, Thermochim. Acta 624 (2016) 59–68 (https://doi.org/10.1016/j.tca.2015.11.023)
M. D. Colman, S. R. da S. Lazzarotto, M. Lazzarotto, F. A. Hansel, T. A. D. Colman, E. Schnitzler, J. Anal. Appl. Pyrolysis 119 (2016) 157–161 (https://doi.org/10.1016/j.jaap.2016.03.005)
A. ASTM, ASTM International: West Conshohocken, ASTM E698-05, PA, USA (2005) (https://www.astm.org/e0698-05.html)
S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520 (2011) 1–19 (https://doi.org/10.1016/j.tca.2011.03.034)
S. Vyazovkin, A. K. Burnham, L. Favergeon, N. Koga, E. Moukhina, L. A. Pérez-Maqueda, N. Sbirrazzuoli, Thermochim. Acta 689 (2020) 178597 (https://doi.org/10.1016/j.tca.2020.178597)
J. R. MacCallum, J. Tanner, Eur. Polym. J. 6 (1970) 1033–1039 (https://doi.org/10.1016/0014-3057(70)90035-2)
N. V. Muravyev, A. N. Pivkina, N. Koga, Molecules 24 (2019) 2298 (https://doi.org/10.3390/molecules24122298)
B. Androsits, J. Therm. Anal. Calorim. 55 (1999) 1041 (https://doi.org/10.1023/A:1010123009883)
H. L. Friedman, J. Polym. Sci. Part C: Polymer Symposia 6 (1964) 183–195 (https://doi.org/10.1002/polc.5070060121)
S. Vyazovkin, Molecules 25 (2020) 2813 (https://doi.org/10.3390/molecules25122813)
L. A. Pérez-Maqueda, J. M. Criado, P. E. Sánchez-Jiménez, J. Phys. Chem. A 110 (2006) 12456–12462 (https://doi.org/10.1021/jp064792g)
A. Soria-Verdugo, E. Goos, N. García-Hernando, U. Riedel, Algal Res. 32 (2018) 11–29 (https://doi.org/10.1016/j.algal.2018.03.005)
A. K. Burnham, L. N. Dinh, J. Therm. Anal. Calorim. 89 (2007) 479–490 (https://doi.org/10.1007/s10973-006-8486-1)
M. Heydari, M. Rahman, R. Gupta, Int. J. Chem. Eng. 2015 (2015) 1–9 (https://doi.org/10.1155/2015/481739)
H. Mahmood, A. Shakeel, A. Abdullah, M. Khan, M. Moniruzzaman, Polymers (Basel) 13 (2021) 2504 (https://doi.org/10.3390/polym13152504)
A. Agić, E. G. Bajsić, J Appl Polym Sci 103 (2007) 764–772 (https://doi.org/10.1002/app.25040)
N. A. Mariano, M. A. G. Tommaselli, S. E. Kuri, Materwiss. Werksttech. 36 (2005) 325–330 (https://doi.org/10.1002/mawe.200500877)