Immobilization of periodate-oxidized horseradish peroxidase by adsorption on sepiolite

Main Article Content

Nevena Surudžić
https://orcid.org/0000-0002-0544-6365
Miloš Simić
Milica Crnoglavac Popović
https://orcid.org/0000-0002-4357-5512
Reyadh El Gahwash
https://orcid.org/0009-0007-9512-5146
Milica Spasojević Savković
https://orcid.org/0000-0001-9134-6637
Radivoje Prodanović
https://orcid.org/0000-0003-4662-1825
Olivera Prodanović
https://orcid.org/0000-0003-4460-5485

Abstract

Horseradish peroxidases (HRP), native and periodate-oxidized were immobilized onto sepiolite clay mineral by adsorption. Both peroxidases were adsorbed on this carrier in different quantities. Specific activity of immobilized enzymes was increased with increasing the amount of peroxidase added per gram of sepiolite. The highest specific activity was achieved when 15 mg of peroxidase was added per gram of sepiolite. Also, periodate-oxidized enzymes showed similar specific activity as native ones. Stability studies (pH, thermal and operational stability) were conducted for both peroxidases. Residual specific activity of HRP immobilized onto sepiolite declined with an increase of incubation time at 65 °C. Oxidized-peroxidase lost 64 % of the initial activity, whereas native HRP dropped 92 % of its activity after 5 minutes of incubation at 65 °C. Reduction of the enzyme activity was observed with the temperature increase from 30 to 80 °C. pH profiles of native peroxidase immobilized onto sepiolite were higher in both acidic and basic regions compared to periodate-oxidized enzyme. Oxidized HRP was more successful in studies of operational stability, it retained 42 % of its activity after 4 consecutive cycles of pyrogallol oxidation, whereas native peroxidase kept only 11 % of the original activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Surudžić, “Immobilization of periodate-oxidized horseradish peroxidase by adsorption on sepiolite”, J. Serb. Chem. Soc., Oct. 2024.
Section
Biochemistry & Biotechnology

Funding data

References

C. L. B. Reis, E. Y. A. de Sousa, J. de F. Serpa, R. C. Oliveira, J. C. S. dos Santos, Quim. Nova 42 (2019) 768. (https://doi.org/10.21577/0100-4042.20170381)

S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor, P. Spizzo, L. Gardossi, Chem. Soc. Rev. 42 (2013) 6262 (https://doi.org/10.1039/C3CS35464D)

D. M. Liu, J. Chen, Y. P. Shi, TrAC - Trends Anal. Chem. 102 (2018) 332 (https://doi.org/10.1016/j.trac.2018.03.011)

C. Garcia-Galan, Á. Berenguer-Murcia, R. Fernandez-Lafuente, R. C. Rodrigues, Adv. Synth. Catal. 353 (2011) 2885 (https://doi.org/10.1002/adsc.201100534)

A. A. Homaei, R. Sariri, F. Vianello, R. Stevanato, J. Chem. Biol. 6 (2013) 185 (http://dx.doi.org/10.1007/s12154-013-0102-9)

B. Brena, P. González-Pombo, F. Batista-Viera, Immobilization of Enzymes and Cells: Third Edition, Methods in Molecular Biology 1051 (2013) 15 (https://doi.org/10.1007/978-1-62703-550-7_2)

Z. Ashkan, R. Hemmati, A. Homaei, A. Dinari, M. Jamlidoost, A. Tashakor, Int. J. Biol. Macromol. 168 (2020) 708 (https://doi.org/10.1016/j.ijbiomac.2020.11.127)

A. Homaei, Enzyme immobilization and its application in the food industry, in Advances in Food Biotechnology, R. V. Rai, John Wiley & Sons, Hoboken, New Jersey, USA, 2015, p. 145 (https://doi.org/10.1002/9781118864463.ch09)

A. R. Ismail, K. H. Baek, Int J Biol Macromol 163 (2020) 1624 (https://doi.org/10.1016/j.ijbiomac.2020.09.021)

F. Largo, R. Haounati, S. Akhouairi, H. Ouachtak, R. El Haouti, A. El Guerdaoui, N. Hafid, Diogo M. F. Santos, F. Akbal, A. Kuleyin, A Jada, A. A. Addi, J. Mol. Liq. 318 (2020) 114247 (https://doi.org/10.1016/j.molliq.2020.114247)

Y. Olshansky, S. Masaphy, R. A. Root, G. Rytwo, Appl. Clay Sci. 152 (2018) 143 (https://doi.org/10.1016/j.clay.2017.11.006)

M.S. Carrasco, J.C. Rad, S. Gonzalez-Carcedo, Biores. Technol. 51 (1995) 175 (https://doi.org/10.1016/0960-8524(94)00115-H)

M. E. Sedaghat, M. Ghiaci, H. Aghaei, S. Soleimanian-Zad, Appl. Clay Sci. 46 (2009) 131 (https://doi.org/10.1016/j.clay.2009.07.021)

M. Shirvani, B. Khalili, M. Kalbasi, H. Shariatmadari, F. Nourbakhsh, Clays Clay Miner. 68 (2020) 287 (https://doi.org/10.1007/s42860-020-00066-w)

S. Cengiz, L. Çavaş, K. Yurdakoç, Appl. Clay. Sci. 65–66 (2012) 114 (https://doi.org/10.1016/j.clay.2012.06.004)

S. Mortazavi, H. Aghaei, Int. J. Biol. Macromol. 164 (2020) 1 (https://doi.org/10.1016/j.ijbiomac.2020.07.103)

N. Caza, J. K. Bewtra, N. Biswas, K. E. Taylor, Water Res. 33 (1999) 3012 (https://doi.org/10.1016/S0043-1354(98)00525-9)

F. Quintanilla-Guerrero, M. A. Duarte-Vázquez, B. E. García-Almendarez, R. Tinoco, R. Vazquez-Duhalt, C. Regalado, Biores. Technol. 99 (2008) 8605 (https://doi.org/10.1016/j.biortech.2008.04.031)

I. Alemzadeh, S. Nejati, J. Haz. Mat. 166 (2009) 1082 (https://doi.org/10.1016/j.jhazmat.2008.12.026)

N. Miletić, A. Nastasović, K. Loos, Biores. Technol. 115 (2012) 126 (https://doi.org/10.1016/j.biortech.2011.11.054)

Z. Knezevic, N. Milosavic, D. Bezbradica, Biochem. Eng. J. 30 (2006) 269 (https://doi.org/10.1016/j.bej.2006.05.009)

R. M. Prodanović, M. B. Simić, Z. M. Vujčić, J. Serb. Chem. Soc. 68 (2003) 819 (https://doi.org/10.2298/JSC0311819P)

N. Milosavić, R. Prodanović, S. Jovanović, Z. Vujčić, Enzyme Microb. Technol. 40 (2007) 1422 (https://doi.org/10.1016/j.enzmictec.2006.10.018)

R. Prodanović, S. Jovanović, Z. Vujčić, Biotechnol. Lett. 23 (2001) 1171 (https://doi.org/10.1023/A:1010560911400)

H. Öztürk, E. Pollet, V. Phalip, Y. Güvenilir, L. Avérous, Polymers 8 (2016) 416 (https://doi.org/10.3390/polym8120416)

H. N. Oztop, C. Hepokur, D. Saraydin, J. Food Sci. 74 (2009) N45 (https://doi.org/10.1111/j.1750-3841.2009.01302.x)

S. F. Torabi, K. Khajeh, S. Ghasempur, N. Ghaemi, S. O. R. Siadat, J. Biotechnol. 131 (2007) 111 (https://doi.org/10.1016/j.jbiotec.2007.04.015)

H. J. Kim, Y. Suma, S. H. Lee, J. A. Kim, H. S. Kim, J. Mol. Catal. B Enzym. 83 (2012) 8 (https://doi.org/10.1016/j.molcatb.2012.06.012)

L. Zhang, C. Gu, J. Xiong, M. Yang, Y. Guo, Sci. China Chem. 58 (2015) 731 (https://doi.org/10.1007/s11426-014-5196-6)

M. Kurosawa, T. Itoh, Y. Kodera, A. Matsushima, M. Hiroto, H. Nishimura, Y. Inada, Bioconjugate Chem. 13 (2002) 167 (https://doi.org/10.1021/bc000133+)

J. Xiong, C. Hang, J. Gao, Y. Guo, C. Gu, Chem. Eng. J. 254 (2014) 276 (https://doi.org/10.1016/j.cej.2014.05.139)

K. Chattopadhyay, S. Mazumdar, Biochemistry 39 (2000) 263 (https://doi.org/10.1021/bi990729o)

N. Ž. Šekuljica, N. Ž. Prlainović, J. R. Jovanović, A. B. Stefanović, V. R. Djokić, D. Ž. Mijin, Z. D. Knežević-Jugović, Bioprocess Biosyst. Eng. 39 (2016) 461 (https://doi.org/10.1007/s00449-015-1529-x)

W. Liu, W. C. Wang, H. S. Li, X. Zhou, Water Sci. Tech. 63 (2011) 1621 (https://doi.org/10.2166/wst.2011.228)

N. Pantić, M. Spasojević, Ž. Stojanović, Đ. Veljović, J. Krstić, A. M. Balaž, R. Prodanović, O. Prodanović, J. Polym. Environ. 30 (2022) 3005 (https://doi.org/10.1007/s10924-021-02364-3)

S. Mortazavi, H. Aghaei, Int. J. Biol. Macromol. 164 (2020) 1 (https://doi.org/10.1016/j.ijbiomac.2020.07.103).

Most read articles by the same author(s)