Zinc oxide nanoparticles: An experimental study of synthesis, characterization and biological activity

Main Article Content

Aula M. Al Hindawi
Zahraa M. Abd Al-AAma
Juman Khaleel Al-Sabbagh
Mohammed Awad
https://orcid.org/0000-0002-7722-8922

Abstract

Zinc oxide (ZnO) nanosized structures were synthesized successfully using a benign method. The latter can be achieved by introducing sesame seed extract into the formation process of ZnO nanostructures as a reducing agent, converting zinc (Zn) ions to Zn0. The structural and optical properties of the prepared ZnO particles were studied using many techniques such as Ultraviolet (UV)-Vis spectrophotometry, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The estimated band gap energy of ZnO nanoparticles formed in the presence and absence of extract was found to be 3.94 eV and 3.88 eV, respectively, suggesting the effect of quantum confinement. The prepared particles have a flower-like shape with the appearance of small spherical particles. A Tauc plot was utilized to estimate the band gap energy of ZnO nanoparticles. The findings show that ZnO nanoparticles exhibit bactericidal properties against Staphylococcus hominins, which are Gram-positive bacteria, and also on Gram-negative bacteria such as Proteus mirabilis, E. coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumonia.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. M. Al Hindawi, Z. M. Abd Al-AAma, J. K. Al-Sabbagh, and M. Awad, “Zinc oxide nanoparticles: An experimental study of synthesis, characterization and biological activity”, J. Serb. Chem. Soc., Aug. 2024.
Section
Biochemistry & Biotechnology

References

L. R. Thurlow, V. C. Thomas, L. E. Hancock, J. Bacteriol. 191 (2009) 6203–6210 (https://doi.org/10.1128/JB.00592-09)

T. J. Foster, FEMS Microbiol. Rev. 41 (2017) 430–449 (https://doi.org/10.1093/femsre/fux007)

M. Ozdal, S. Gurkok, ADMET and DMPK 10 (2022) 115–129 (https://doi.org/10.5599/admet.1172)

R. D. Desiati, M. Taspika, E. Sugiarti, Mater. Res. Express 6 (2019) 95059 (https://doi.org/10.1088/2053-1591/ab155c)

D. Sahu, N. R. Panda, Curr. Nanosci. 17 (2021) 162–169 (https://doi.org/10.2174/1573413716999200728175722)

C. Silva, F. Bobillier, D. Canales, F. Antonella Sepúlveda, A. Cament, N. Amigo, L. M. Rivas, M. T. Ulloa, P. Reyes, J. A. Ortiz, T. Gómez, C. Loyo, P. A. Zapata, Polymers (Basel). 12 (2020) 2132 (https://doi.org/10.3390/polym12092132)

R. C. De Souza, L. U. Haberbeck, H. G. Riella, D. H. B. Ribeiro, B. A. M. Carciofi, Brazilian J. Chem. Eng. 36 (2019) 885–893 (https://doi.org/10.1590/0104-6632.20190362s20180027)

S. Yang, C. Feng, D. Spence, A. M. A. A. Al Hindawi, E. Latimer, A. M. Ellis, C. Binns, D. Peddis, S. S. Dhesi, L. Zhang, Y. Zhang, K. N. Trohidou, M. Vasilakaki, N. Ntallis, I. MacLaren, F. M. F. De Groot, Adv. Mater. 29 (2017) 1604277 (https://doi.org/10.1002/adma.201604277)

H. Yang, J. Zhang, Z. Li, J. Huang, J. Wu, Y. Zhang, H. Ge, Y. Zhao, Nanomaterials 13 (2023) 2033 (https://doi.org/10.3390/nano13142033)

C. Pushpalatha, J. Suresh, V. Gayathri, S. Sowmya, D. Augustine, A. Alamoudi, B. Zidane, N. H. Mohammad Albar, S. Patil, Front. Bioeng. Biotechnol. 10 (2022) 917990 (https://doi.org/10.3389/fbioe.2022.917990)

T. A. Singh, J. Das, P. C. Sil, Adv. Colloid Interface Sci. 286 (2020) 102317 (https://doi.org/10.1016/j.cis.2020.102317)

L. E. Román, J. Huachani, C. Uribe, J. L. Solís, M. M. Gómez, S. Costa, S. Costa, Appl. Surf. Sci. 469 (2019) 204–212 (https://doi.org/10.1016/j.apsusc.2018.11.047)

M. G. Kotresh, M. K. Patil, S. R. Inamdar, Optik (Stuttg). 243 (2021) 167506 (https://doi.org/10.1016/j.ijleo.2021.167506)

S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S. K. Oruganti, ECS J. Solid State Sci. Technol. 10 (2021) 23002 (https://doi.org/10.1149/2162-8777/abe095)

I. Ben Amor, H. Hemmami, S. E. Laouini, M. S. Mahboub, A. Barhoum, Catalysts 12 (2022) 1611 (https://doi.org/10.3390/catal12121611)

M. M. ElFaham, A. M. Mostafa, E. A. Mwafy, J. Phys. Chem. Solids 154 (2021) 110089 (https://doi.org/10.1016/j.jpcs.2021.110089)

C. R. Mendes, G. Dilarri, C. F. Forsan, V. de M. R. Sapata, P. R. M. Lopes, P. B. de Moraes, R. N. Montagnolli, H. Ferreira, E. D. Bidoia, Sci. Rep. 12 (2022) 2658 (https://doi.org/10.1038/s41598-022-06657-y)

M. I. Khan, S. Shah, S. Faisal, S. Gul, S. Khan, Abdullah, S. A. Shah, W. A. Shah, Micromachines 13 (2022) 1–16 (https://doi.org/10.3390/mi13050668)

M. Zare, K. Namratha, S. Alghamdi, Y. H. E. Mohammad, A. Hezam, M. Zare, Q. A. Drmosh, K. Byrappa, B. N. Chandrashekar, S. Ramakrishna, X. Zhang, Sci. Rep. 9 (2019) 8303 (https://doi.org/10.1038/s41598-019-44309-w)

A. M. Al Hindawi, I. Joudah, S. Hamzah, Z. Tarek, IOP Conf. Ser. Mater. Sci. Eng. 571 (2019) 12069 (https://doi.org/10.1088/1757-899X/571/1/012069)

A. M. Al Hindawi, N. H. Obaid, I. Joudah, N. Shiltagh, K. Tahir, Int. J. Pharm. Res. 12 (2020) (https://doi.org/10.31838/ijpr/2020.12.02.0150)

A. Miri, M. Khatami, O. Ebrahimy, M. Sarani, Green Chem. Lett. Rev. 13 (2020) 27–33 (https://doi.org/10.1080/17518253.2020.1717005)

L. Alsaba, M. Ashoush, S. Elsayed, A. Eid, A. Abdelghany, Al-Azhar Bull. Sci. 30 (2019) 1–6 (https://doi.org/10.21608/absb.2019.86747)

Z. Turki, A. Al Hindawi, N. Shiltagh, NanoWorld J. 08 (https://doi.org/10.17756/nwj.2022-102)

A. Abed, A. Al Hindawi, H. Alesary, NanoWorld J. 08 (https://doi.org/10.17756/nwj.2022-103)

P. Shunmuga Sundaram, T. Sangeetha, S. Rajakarthihan, R. Vijayalaksmi, A. Elangovan, G. Arivazhagan, Phys. B Condens. Matter 595 (2020) 412342 (https://doi.org/10.1016/j.physb.2020.412342)

W. Muhammad, N. Ullah, M. Haroon, B. H. Abbasi, RSC Adv. 9 (2019) 29541–29548 (https://doi.org/10.1039/C9RA04424H)

A. Q. Abed, A. M. Al Hindawi, H. F. Alesary, AIP Conf. Proc. 2830 (2023) 20001 (https://doi.org/10.1063/5.0156826)

Z. T. Turki, A. M. Al Hindawi, N. M. Shiltagh, AIP Conf. Proc. 2834 (2023) 30008 (https://doi.org/10.1063/5.0161450)

N. Jayarambabu, B. S. Kumari, K. V. Rao, Y. T. Prabhu, Int. J. Curr. Eng. Technol. 4 (2014) 3411–3416 (https://inpressco.com/wp-content/uploads/2014/09/Paper593411-3416.pdf)

M. Hraja, A. Al Hindawi, N. Shiltagh, J. Turkish Chem. Soc. 11 (2011) 565–574 (https://doi.org/10.18596/jotcsa.1356389)

P. J. Kanu, Amer. J. Biochem. Mol. Biol. 1 (2012) 145–157 (https://doi.org/10.3923/ajbmb.2011.145.157)

S. Alamdari, M. Sasani Ghamsari, C. Lee, W. Han, H.-H. Park, M. J. Tafreshi, H. Afarideh, M. H. M. Ara, Appl. Sci. 10 (2020) 3620 (https://doi.org/10.3390/app10103620)

M. J. Klink, N. Laloo, A. Leudjo Taka, V. E. Pakade, M. E. Monapathi, J. S. Modise, Molecules 27 (2022) 3532 (https://doi.org/10.3390/molecules27113532)

B. Abebe, E. A. Zereffa, A. Tadesse, H. C. A. Murthy, Nanoscale Res. Lett. 15 (2020) 190 (https://doi.org/10.1186/s11671-020-03418-6)

N. B. Raj, N. T. PavithraGowda, O. S. Pooja, B. Purushotham, M. R. A. Kumar, S. K. Sukrutha, C. R. Ravikumar, H. P. Nagaswarupa, H. C. A. Murthy, S. B. Boppana, J. Photochem. Photobiol. 6 (2021) 100021 (https://doi.org/10.1016/j.jpap.2021.100021)

J. K. Al-Sabbagh, A. Abd Al-Redha, M. A. Mohammad, Indian J. Public Health Res. Dev. 11 (2020) 1123 (https://www.researchgate.net/publication/345508208)

C. C. Murdoch, E. P. Skaar, Nat. Rev. Microbiol. 20 (2022) 657 (https://doi.org/10.1038/s41579-022-00745-6)

B. Tartilán-Choya, C. Tejedor, R. Conde-Álvarez, P. María Muñoz, N. Vizcaíno. Front. Vet. Sci. 10 (2024) (https://doi.org/10.3389/fvets.2023.1323500).