The role of non-covalent interactions in the solvation dynamics of metronidazole in water: A theoretical study Scientific paper

Main Article Content

Sumit Kumar
https://orcid.org/0000-0002-5695-5944
Nagendra Kumar
Ravindra Kumar
https://orcid.org/0009-0007-9546-1326
Kamal K. Mishra
https://orcid.org/0000-0002-0642-2007

Abstract

Metronidazole, the medicine with the brand name Flagyl, is used to treat the gastrointestinal infection and the activity against anaerobic bacteria like protozoa. The current work describes the interaction of metronidazole drug with water solvent needed for oral ingestion, which is the most common and convenient pathway for the administration of the drug in the body. Computational calculations are performed to optimize the metronidazole drug having solvent (water) at different positions. NBO and AIM calculations employed to determine the strength of intermolecular hydrogen bonding interactions between metronidazole and solvent (water). The second perturbation energy was calculated and the result was a maximum of 67 kJ mol-1 for O-H…O hydrogen bonding interaction. The solvation energy of the metronidazole drug, determined using the Solvation Model based on Density (SMD) model, is found to be -69.2 kJ mol-1. The bonding parameters of the solvated drug have been analysed through critical point calculations based on the Atom-in-Molecule (AIM) theory. Furthermore, an ab initio molecular dynamics (AIMD) study reveals that the lowest decomposition energies of metronidazole in the presence of water, considering all pores and different pores, are -927.86 and -699.003 a.u., respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Kumar, N. Kumar, R. Kumar, and K. K. Mishra, “The role of non-covalent interactions in the solvation dynamics of metronidazole in water: A theoretical study: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 7-8, pp. 883–897, Sep. 2025.
Section
Theoretical Chemistry

References

S. Löfmark, C. Edlund, C. E. Nord, Clin Infect Dis 50 (2010) S16 (http://dx.doi.org/10.1086/647939)

S. Arora, J. Clarke, E. Tsakalozou, P. Ghosh, K. Alam, J. E. Grice, M. S. Roberts, M. Jamei, S. Polak, Mol. Pharm. 19 (2022) 3139 (http://dx.doi.org/10.1021/acs.molpharmaceut.2c00229)

C. Gao, X. Wang, B. Yang, W. Yuan, W. Huang, G. Wu, J. Ma, ACS Nano 17 (2023) 7335 (http://dx.doi.org/10.1021/acsnano.2c11305)

D. Pal, S. Banerjee, J. Cui, A. Schwartz, S. K. Ghosh, J. Samuelson, Antimicrob. Agents Chemother. 53 (2009) 458 (http://dx.doi.org/10.1128/aac.00909-08)

J. Samuelson, Antimicrob. Agents Chemother. 43 (1999) 1533 (http://dx.doi.org/10.1128/aac.43.7.1533)

R. Nau, F. Sörgel, H. Eiffert, Clinical microbiology reviews 23 (2010) 858 (http://dx.doi.org/10.1128/cmr.00007-10)

S. V. Sastry, J. R. Nyshadham, J. A. Fix, Pharmaceutical Science & Technology Today 3 (2000) 138 (http://dx.doi.org/10.1016/S1461-5347(00)00247-9)

B. Agoram, W. S. Woltosz, M. B. Bolger, Adv. Drug Delivery Rev. 50 (2001) S41 (http://dx.doi.org/10.1016/S0169-409X(01)00179-X)

M. Jamei, D. Turner, J. Yang, S. Neuhoff, S. Polak, A. Rostami-Hodjegan, G. Tucker, The AAPS Journal 11 (2009) 225 (http://dx.doi.org/10.1208/s12248-009-9099-y)

C.-E. Chang, M. K. Gilson, J. Comput. Chem. 24 (2003) 1987 (http://dx.doi.org/10.1002/jcc.10325)

S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 94 (1990) 8897 (http://dx.doi.org/10.1021/j100389a010)

Y. J. Franzke, C. Holzer, J. H. Andersen, T. Begušić, F. Bruder, S. Coriani, F. Della Sala, E. Fabiano, D. A. Fedotov, S. Fürst, J. Chem. Theory Comput. 19 (2023) 6859 (http://dx.doi.org/10.1021/acs.jctc.3c00347)

S. G. Balasubramani, G. P. Chen, S. Coriani, M. Diedenhofen, M. S. Frank, Y. J. Franzke, F. Furche, R. Grotjahn, M. E. Harding, C. Hättig, J. Chem. Phys. 152 (2020) 184107 (http://dx.doi.org/10.1063/5.0004635)

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

C. Steffen, K. Thomas, U. Huniar, A. Hellweg, O. Rubner, A. Schroer, J. Comput. Chem. 31 (2010) 2967 (http://dx.doi.org/10.1002/jcc.21576)

GaussView, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 98 (1994) 11623 (https://doi.org/10.1021/j100096a001)

Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2 (2006) 364 (http://dx.doi.org/10.1021/ct0502763)

S. Grimme, J. Comput. Chem. 27 (2006) 1787 (https:/doi.org/10.1002/jcc.20495)

M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 166 (1990) 281 (https:/doi.org/10.1016/0009-2614(90)80030-H)

M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 166 (1990) 275 (https:/doi.org/10.1016/0009-2614(90)80029-D)

D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 98 (1993) 1358 (http://dx.doi.org/10.1063/1.464303)

R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison, J. Chem. Phys. 96 (1992) 6796 (http://dx.doi.org/10.1063/1.462569)

T. H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007 (http://dx.doi.org/10.1063/1.456153)

S. F. Boys, F. and Bernardi, Mol. Phys. 19 (1970) 553 (http://dx.doi.org/10.1080/00268977000101561)

F. Weinhold, J. Comput. Chem. 33 (2012) 2363 (http://dx.doi.org/10.1002/jcc.23060)

E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 40 (2019) 2234 (http://dx.doi.org/10.1002/jcc.25873)

R. A. Boto, F. Peccati, R. Laplaza, C. Quan, A. Carbone, J. P. Piquemal, Y. Maday, A. J. Contreras-Garci, J. Chem. Theory Comput. 16 (2020) 4150 (http://dx.doi.org/10.1021/acs.jctc.0c00063)

F. Weinhold, C. Landis, E. Glendening, Int. Rev. Phys. Chem. 35 (2016) 399 (https://doi.org/10.1080/0144235X.2016.1192262)

P. Kolandaivel, V. Nirmala, J. Mol. Struct. 694 (2004) 33 (http://dx.doi.org/10.1016/j.molstruc.2004.01.030)

P. Su, H. Li, J. Chem. Phys. 131 (2009) 014102 (http://dx.doi.org/10.1063/1.3159673)

T. Lu, J. Chem. Phys. 161 (2024) (http://dx.doi.org/10.1063/5.0216272)

T. Lu, Q. Chen, Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory 2 (2022) 631

T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580 (http://dx.doi.org/10.1002/jcc.22885)

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery Jr, J. Comput. Chem. 14 (1993) 1347 (https:/doi.org/10.1002/jcc.540141112)

V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995 (http://dx.doi.org/10.1021/jp9716997)

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 113 (2009) 6378 (http://dx.doi.org/10.1021/jp810292n)

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057 (http://dx.doi.org/10.1039/B515623H)

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456 (https:/doi.org/10.1002/jcc.21759)

C. Adamo, V. Barone, J. Chem. Phys. 110 (1999) 6158 (http://dx.doi.org/10.1063/1.478522)

D. Marx, J. Hutter, Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press: 2009. (http://dx.doi.org/10.1017/CBO9780511609633)

P. Carloni, U. Rothlisberger, M. Parrinello, Acc. Chem. Res. 35 (2002) 455 (http://dx.doi.org/10.1021/ar010018u)

F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 12 (2022) e1606 (http://dx.doi.org/10.1002/wcms.1606)

S. Kumar, J. Serb. Chem. Soc. 88 (2022) 381 (http://dx.doi.org/10.2298/JSC220921087K)

A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. (Washington, DC, U. S.) 88 (1988) 899 (http://dx.doi.org/10.1021/cr00088a005)

S. Kumar Panja, S. Kumar, A. D. Fazal, S. Bera, J. Photochem. Photobiol., A 445 (2023) 115084 (http://dx.doi.org/10.1016/j.jphotochem.2023.115084)

P. L. A. Popelier, F. Aicken, S. O’Brien, Atoms in molecules. Prentice Hall Manchester: 2000; Vol. 188.