Investigation of multi-walled carbon nanotubes catalytic activity by means of the model aerobic oxidation reaction Scientific paper
Main Article Content
Abstract
This study investigates the synthesis of multi-walled carbon nanotubes (MWCNTs) via chemical vapor deposition (CVD) using propane gas and evaluates their catalytic efficiency in oxidation reactions. The MWCNTs were synthesized in a laboratory-scale CVD reactor under optimized conditions, with ferrocene used as a precursor to incorporate 9.8 wt. % iron into the nanotube structure. The catalytic activity of the synthesized MWCNTs was evaluated in the cumene oxidation reaction, demonstrating remarkable performance even at relatively low temperatures. This enhanced catalytic efficiency is attributed to the presence of iron compounds within the MWCNT channels, which are presumed to act as active sites for the reaction. Among the catalysts studied, the G-CVD-1 sample containing 9.8 wt. % iron showed the highest performance, accelerating the oxidation reaction by a factor of 23 compared to the uncatalyzed process. In comparison, the L-CVD-184 sample, with a lower iron content of 3.7 wt. %, achieved a 16-fold increase in reaction rate relative to the same uncatalyzed baseline. These values indicate that the iron concentration within MWCNTs plays a crucial role in determining their catalytic efficiency, with higher iron loading providing significantly better activity. This study demonstrates that iron-modified MWCNTs possess significant potential as durable and efficient catalysts for oxidation reactions.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Daniyal, B. Liu, W. Wang, Curr. Med. Chem. 27 (2020) 3665 (https://doi.org/10.2174/13816128256661902011296290)
B. D. Gupta, A. Pathak, V. Semwal, Sensors 19 (2019) 3536 (https://doi.org/10.3390/s19163536)
M. Melchionna, S. Marchesan, M. Prato and P. Fornasieroa, Catal. Sci. Technol. 5 (2015) 3859 (https://doi.org/10.1039/C5CY00651A)
Y. Yibo, M. Jianwei, Y. Zhihong, X. Fang-Xing, H. B. Yang, B. Liu, Y. Yang, Chem. Soc. Rev. 44 (2015) 3295 (https://doi.org/10.1039/C4CS00492B)
I. Khan, Kh. Saeed, Carbon Letters 14 (2013) 131 (https://doi.org/10.5714/CL.2013.14.3.131)
A. Sivaranjani, C. Lakshmi Devi, Mater. Res. Express 6 (2019) 1050e3 (https://doi.org/10.1088/2053-1591/ab42ff)
E. B. Zeynalov, E. R. Huseynov, N. I. Salmanova, N. A. Abdurahmanova, Chem. Probl. 3 (2020) 351 (https://doi.org/10.32737/2221-8688-2020-3-351-360)
E. B. Zeynalov, Y. M. Nağıyev, F. M. Mammedov, S. A. Alıyeva, M. I. Nadırı, L. I. Ahmedova, M. Y. Maharramova, N. A. Abdurehmanova, G. Sh. Asadzade, News Baku State Univer. 1 (2017) 18 (http://static.bsu.az/w1/pdf%202017%20N1/1.pdf)
N. A. Mustafayeva, Azer. Chem. J. 2022 (2022) 87 (https://doi.org/10.32737/0005-2531-2022-3-87-92)
Ya. M. Nagiyev, Proc. Petrochem. Oil Ref. 1 ( 2021) 99 (https://www.ppor.az/jpdf/8-Naghiyev-1-2021.pdf)
E. B. Zeynalov, A. B. Huseynov, S. G. Abdullayeva, N. A. Abdurahmanova, in Proceedngs of 6th International Caucasian Symposium on Polymers and Advanced Materials, 2019, Batumi Shota Rustaveli State University, Georgia, Ivane Javakhishvili Tbilisi State University Press, Batumi, 2019, p. 115 (https://www.icsp6.tsu.ge/ge/x3_185s4csfh92rm)
N. A. Abdurahmanova, Proc. Petrochem. Oil Ref. 21 (2020) 268 (https://ppor.az/jpdf/11-Abdurahmanova-2-2020.pdf)
E. Zeynalov, A. Huseynov, E. Huseynov, N. Salmanova, Y. Nagiyev, N. Abdurakhmanova, Chem. Chem. Technol. 15 (2021) 479 (https://doi.org/10.23939/chcht15.04.479)
E. B. Zeynalov, Ya. M. Nagiyev, A.B. Huseynov, M. I. Nadiri, M. Kh. Abbasov, A. D. Guliyev, N. Salmanova, SOCAR Proc. 4 (2022) 134 (https://proceedings.socar.az/uploads/pdf/89/10.5510_OGP20220400794.pdf)
Ya. M. Nagiev, R. R. Apaeva, M. I. Nadiri, A. B. Guseinov, E. B. Zeynalov, SOCAR Proc. 3 (2023) 182 (https://doi.org/10.5510/OGP20230300900)
E. B. Zeynalov, N. S. Allen, Ya. M. Naghiev, A. B. Huseinov, F.G. Rzaev, J. Phys. Chem. Solids 195 (2024) 112263 (https://doi.org/10.1016/j.jpcs.2024.112263)
H. Yu, F. Peng, J. Tan, X. Hu, H. Wang, J. Yank, W. Zheng, Angew. Chem. Int. Ed. Engl. 50 (2011) 3978 (https://doi.org/10.1002/anie.201007932)
W. Jia, H. Rui, F. Zhenbao, L. Hongyang, S. Dangsheng, ChemSusChem 9 (2016) 1820 (https://doi.org/10.1002/cssc.201600234)
W. Qiulin, Z. Jianchao, T. Minghui, P. Yaqi, D. Cuicui, Y. Jianhua, L. Shengyong, Environ. Prog. Sustain. 38 (2019) 13221 (https://doi.org/10.1002/ep.13221)
H. S. Yoon, P. Hyunwoong, O. N. Elbashir, H. S. Dong, Sust. Mat. Tech. 26 (2020) e002244 (https://doi.org/10.1016/j.susmat.2020.e00224)
Q. Zhenping, M. Lei, W. Hui, F. Qiang, Chem. Commun. 51 (2015) 956 (https://doi.org/10.1039/C4CC06941B)
E. Ali, D. Hadis, K. Hamzeh, K. Mohammad, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S. W. Joo, Nanoscale Res. Let. 9 (2014) 393 (https://doi.org/10.1186/1556-276X-9-393)
E. Abbasi, F. A. Sedigheh, A. Abolfazl, M. Morteza, H. T. Nasrabadi, S. W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Nanoscale Res. Let. 9 (2014) 247 (https://doi.org/10.1186/1556-276X-9-247)
Y. M. Jose., Y. M. Miki, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 62 (1993) 202 (https://doi.org/10.1063/1.109315)
L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. 76 (1996) 971 (https://doi.org/10.1103/PhysRevLett.76.971)
P. M. Ajayan, T. W. Ebbesen, Rep. Prog. Phys. 60 (1997), 1025 (https://doi.org/10.1088/0034-4885/60/10/001)
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, H. L. Young, G. K. Seong, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, Science 273 (1996) 483 (https://doi.org/10.1126/science.273.5274.483)
R. Hirlekar, M. Yamagar, H. Garse, M. Vij, V. Kadam, Asian J. Pharm. Clin. Res. 2 (2009) 17 (https://www.innovareacademics.in/journal/ajpcr/Vol2Issue4/238.pdf)
P. X. Hou, S. Bai, Q. H. Yang, C. Liu, H. M. Cheng, Carbon 40 (2002) 81 (https://doi.org/10.1016/S0008-6223(01)00075-6)
S. P. Patole, P. S. Alegaonkar, H. C. Lee, J. B. Yoo, Carbon 46 (2008) 1987 (https://doi.org/10.1016/j.carbon.2008.08.009)
A. Hayder, R. Irmawati, I. Ismayadi, Y. Nor Azah, Pertanika J. Sci. Technol. 25 (2017) 379 (https://www.researchgate.net/publication/316988879_Hydrocarbon_Sources_for_the_Carbon_Nanotubes_Production_by_Chemical_Vapour_Deposition_A_Review )
E. T. Thostenson, Z. Ren, T. W. Chou, Comp. Sci. Technol. 6 (2001) 1899 (https://doi.org/10.1016/S0266-3538(01)00094-X)
R. J. Hynes, R. Sankaranarayanan, M. Kathiresan, P. Senthamaraikannan, in Nanocarbon and its Composites, A. Khan, M. Jawaid, Inamuddin, A. M. Asiri, Eds., Woodhead Publishing, Cambridge, 2019, pp. 805–830 (https://doi.org/10.1016/B978-0-08-102509-3.00027-4)
Federal Agency for Technical Regulation and Metrology (OOO EO Engineering Safety), +7 and R 58356, 2019 (ГОСТ Р 58356-2019: Наноматериалы. Нанотрубки углеродные одностенные. Технические требования и методы испытаний (standartgost.ru))
N. S. Kobotaeva, T. S. Skorokhodova, N. V. Ryabova, Russ. J. Phys. Chem., A 89 (2015) 462 (https://doi.org/10.1134/S0036024415030164)
A. Bhattacharya, J. Chem. Eng. 137 (2008) 308 (https://doi.org/10.1016/j.cej.2007.04.043).