Ruthenium(III)-monosubstituted Keggin-type polyoxotungstate: Synthesis, characterization and application in the catalytic methanation of carbon dioxide Scientific paper

Main Article Content

Sadia Mansouri
https://orcid.org/0009-0003-4096-3901
Salem Cheknoun
https://orcid.org/0009-0001-3687-3087

Abstract

Cs5[α-SiW11O39RuIII(H2O)]×8H2O heteropolysalt with a Keggin struc­ture was successfully synthesized, and its physicochemical characteristics were determined via X-ray diffraction, UV‒Vis spectroscopy, Fourier-transform infrared and Brunauer, Emmett and Teller surface area measure­ments. The acid‒base properties were evaluated via isopropanol decomposition. The catalytic performance for the CO2 methanation reaction was evaluated in a fixed-bed reac­tor at atmospheric pressure by varying the process parameters, which included the reaction temperature (200–450 °C), reactant mole ratio H2/CO2 (1, 2 and 4) and flow rate (1, 1.5 and 2 L/h). The experimental results showed that
Cs5[α-SiW11O39RuIII(H2O)]×8H2O exhibited the best compromise between con­ver­sion and selectivity at 350 °C, with a H2/CO2 mole ratio of 4 and a flow rate of 1 L/h.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Mansouri and S. Cheknoun, “Ruthenium(III)-monosubstituted Keggin-type polyoxotungstate: Synthesis, characterization and application in the catalytic methanation of carbon dioxide: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 7-8, pp. 957–972, Sep. 2025.
Section
Chemical Engineering

References

T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113 (https://doi.org/10.1016/S0360-0564(08)60041-3)

R. Neumann, in Progress in Inorganic Chemistry, K. D. Karlin, Ed., John Wiley & Sons, Inc., New York, 1998 (https://doi.org/10.1002/9780470166482.ch3)

C.L Hill, Chem. Rev. 98 (1998) 1 (https://doi.org/10.1021/cr960395y)

I.V. Kozhevnikov, Catalysts for fine chemical synthesis, catalysis by polyoxometalates, Vol. 2, Wiley, Chichester, 2002

S. Hocine, C. Rabia, M. M. Bettahar, M. Fournier, Stud. Surf. Sci. Catal. 130 (2000) 1895 (https://doi.org/10.1016/S0167-2991(00)80478-4)

N. Dimitratos, J. C. Védrine, Appl. Catal. 81 (2003) 561 (https://doi.org/10.1016/S0920-5861(03)00154-8)

S. Cheknoun, S. Mansouri, O. Benlounes, S. Hocine, J. Chem. Sci. 130 (2018) 40 (https://doi.org/10.1007/s12039-018-1447-y)

S. Mansouri, O. Benlounes, C. Rabia, R. Touvenot, M. M. Bettahar, S. Hocine, J. Mol. Catal., A 379 (2013) 255 (https://doi.org/10.1016/j.molcata.2013.08.006)

G. Busca, F. Cavani, E. Etienne, E. Finocchio, A. Galli, G. Selleri, F. Trifirò, J. Mol. Catal., A 114 (1996) 343 (https://doi.org/10.1016/S1381-1169(96)00337-8)

H. S Jiang, X. Mao, S. J. Xie, B. K. Zhong, J. Mol. Catal., A 185 (2002) 143 (https://doi.org/10.1016/S1381-1169(01)00449-6)

P. Putaj, F. Lefebvre, Coord. Chem. Rev. 255 (2011) 1642 (https://doi.org/10.1016/j.ccr.2011.01.030)

S. Ogo, M. Miyamoto, Y. Ide, T Sano, M. Sadakane, Dalton. Trans. 41 (2012) 9901 (https://doi.org/10.1039/C2DT30475A)

A. Yokoyama, K. Ohkubo, T. Ishizuka, T. Kojima, S. Fukuzumi, Dalton. Trans. 41 (2012) 10006 (https://doi.org/10.1039/C2DT30424D)

A. M. Khenkin, I. Efremenko, L. Weiner, J. M. L. Martin, R. Neumann, Chem. Eur. J. 16 (2010) 1356 (https://doi.org/10.1002/chem.200901673)

L. Z. Zhang, Y. Q. Lu, M. Rostam-Abadi, Phys. Chem. Chem. Phys. 14 (2012) 16633 (https://doi.org/10.1039/C2CP42209C)

B. S. Kwak, K. Vignesh, N. K. Park, H. J. Ryu, J. I. Baek, M. Kang, Fuel 143 (2015) 570 (https://doi.org/10.1016/j.fuel.2014.11.066)

P. H. Pandey, H. S. Pawar, J. CO2 Util. 41 (2020) 101267 (https://doi.org/10.1016/j.jcou.2020.101267)

S. Li, L. Guo, T. Ishihara, Catal. Today 339 (2020) 352 (https://doi.org/10.1016/j.cattod.2019.01.015)

W. K Fan, M. Tahir, J. Environ. Chem. Eng. 9 (2021)105460 (https://doi.org/10.1016/j.jece.2021.105460)

W. Wei, G. Jinlong, Front. Chem. Sci. 5 (2011) 2 (https://doi.org/10.1007/s11705-010-0528-3)

A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Appl. Catal., B 113–114 (2012) 2 (https://doi.org/10.1016/j.apcatb.2011.02.033)

A. Karelovic, P. Ruiz, Appl. Catal., B 113–114 (2012) 237 (https://doi.org/10.1016/j.apcatb.2011.11.043)

Y. Li, Q. Zhang, R. Chai, G. Zhao, F. Cao, Y. Liu, Y. Lu, Appl. Catal., A 510 (2016) 216 (https://doi.org/10.1016/j.apcata.2015.11.034)

R. A. Hubble, J. Y. Lim, J. S Dennis, Faraday Discuss. 192 (2016) 529 (https://doi.org/10.1039/C6FD00043F)

S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P Prabhakaran, S. Bajohr, Fuel 166 (2016) 276 (https://doi.org/10.1016/j.fuel.2015.10.111)

A. Tézé, G. Hervé, Inorg. Synth. 27(1990) 85 (https://doi.org/10.1002/9780470132586.ch16)

K. Filipek, Inorg. Chim. Acta 231 (1995) 237 (https://doi.org/10.1016/0020-1693(94)04347-X)

M. Sadakane, D. Tsukuma, M.H. Dickman, B. Bassem, U. Kortz, M. Higashijima, W. Ueda, Dalton. Trans. 35 (2006) 4271 (https://doi.org/10.1039/B606266K)

H. Chermette, F. Lefebvre, C.R. Chimie 15(2012) 143 (https://doi.org/10.1016/ j.crci.2011.09.002)

T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41(1996) 113 (https://doi.org/10.1016/S0360-0564(08)60041-3)

Y. Ding, Q. Gao, G. Li, H. Zhang, J. Wang, L. Yan, J. Suo, J. Mol. Catal., A 218 (2004) 161 (https://doi.org/10.1016/j.molcata.2004.04.019)

Q. Wu, X. Sang, F. Shao, W. Pang, Mater. Chem. Phys. 92 (2005) 16 (https://doi.org/10.1016/j.matchemphys.2004.07.026)

L. Méndez, R. Torviso, L. R. Pizzio, M. N. Blanco, Catal. Today 173 (2011) 32 (https://doi.org/10.1016/j.cattod.2011.03.028)

L. R. Pizzio, M. N. Blanco, Micropor. Mesopor. Mat. 103(2007) 40 (https://doi.org/10.1016/j.micromeso.2007.01.036)

J. B. Moffat, J. Mol. Catal. 52(1989) 169 (https://doi.org/10.1016/0304-5102(89)80088-4)

S. A. El-Molla, M. N. Hammed, G. A. El-Shobaky, Mater. Lett. 58 (2004) 1003 (https://doi.org/10.1016/j.matlet.2003.08.006)

H. G. El-Shobaky, A. S. Ahmed, N. R. E Radwan, J. Colloids Surf., A 274 (2006) 138 (https://doi.org/10.1016/j.colsurfa.2005.08.046)

C. Ancion, G. Poncelet, Appl. Catal., A 108 (1994) 31 (https://doi.org/10.1016/0926-860X(94)85178-6)

A. Gervasini, J. Fenyvesi, A. Auroux, Catal. Lett. 43(1997) 219 (https://doi.org/10.1023/ A:1018979731407)

M. Misono, Catal. Rev. Sci. Eng. 29 (1987) 269 (https://doi.org/10.1080/01614948708078072)

M. M. Jaffar, M. A. Nahil, P. T Williams, Energy Technol. 7 (2019) 1900795 (https://doi.org/10.1002/ente.201900795)

M. Gabrovska, R.Edreva-Kardijeva, D. Crisan, P. Tzvetkov, M. Shopska, I. Shtreva, React. Kin. Mech. Catal. 105 (2012) 79 (https://doi.org/10.1007/s11144-011-0378-0)

S. Abate, K. Barbera, Giglio E, F. Deorsola, S. Bensaid, S. Perathoner, R. Pirone, G. Centi, Ind. Eng. Chem. Res. 55 (2016) 8299 (https://doi.org/10.1021/acs.iecr.6b01581)

A. Borgschulte, N. Gallandat, B. Probst, R. Suter, E. Callini, D. Ferri, Y. Arroyo, R. Erni, H. Geerlings, A. Züttel, Phys. Chem. Chem. Phys. 15 (2013) 9620 (https://doi.org/10.1039/C3CP51408K)

S. Eckle, H. G. Anfang, R. J. Behm, J. Phys. Chem., C 115 (2011) 1361 (https://doi.org/10.1021/jp108106t)

E. Baraj, S. Vagaský, T. Hlinčík, K. Ciahotný, V. Tekáč, Chem. Pap. 70 (2016) 395 (https://doi.org/10.1515/chempap-2015-0216)

B. Miao, S. S. K. Ma, X .Wang, H. Su, S. H. Chan, Catal. Sci. Technol. 6 (2016) 4048 (https://doi.org/10.1039/C6CY00478D)

Z. M. Hu, K. Takahashi, H. Nakatsuji, Surf. Sci. 442 (1999) 90 (https://doi.org/10.1016/S0039-6028(99)00900-0)

H .Nakatsuji, Z. M. Hu, Int. J. Quantum. Chem. 77 (2000) 341 (https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<341::AID-QUA33>3.0.CO;2-T)