Water-splitting electrocatalytic properties and computational characterization of a symmetrically substituted porphyrazine Scientific paper
Main Article Content
Abstract
The porphyrazine 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine was studied regarding its electrocatalytic water-splitting activity in a wide pH range. Two different methods were employed to manufacture electrodes based on this compound: a solution-based method and a catalyst ink-based one. The most catalytically active electrode was obtained using the catalyst ink-based method. In 1 mol L-1 KOH solution it displays an H2 evolution reaction overpotential of 0.6 V and a Tafel slope of 0.15 V dec-1. Statistical analysis revealed a significant correlation between the pH and the O2 evolution reaction overpotential. Quantum chemical calculations were performed to obtain a more detailed understanding of the porphyrazine’s properties.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
G. Singh, S. Chandra, Electrochem. Sci. Adv. 3 (2023) e2100149 (https://doi.org/10.1002/elsa.202100149)
A. Ghosh, J. Fitzgerald, P. G. Gassman, J. Almlof, Inorg. Chem. 33 (1994) 6057 (https://doi.org/10.1021/ic00104a014)
P. A. Pinheiro, G. F. M. Pereira, L. O. Cunha, J. P. S. C. Leal, M. E. Alvarenga, F. T. Martins, H. Silva, J. L. S. Milani, T. T. Tasso, Photochem. Photobio. Sci. 23 (2024) 1757 (https://doi.org/10.1007/s43630-024-00629-z)
D.‐P. Medina, J. Fernandez‐Ariza, M. Urbani, F. Sauvage, T. Torres, M. S. Rodriguez‐
-Morgade, Molecules 26 (2021) 2129 (https://doi.org/10.3390/molecules26082129)
T. Koczorowski, B. Wicher, R. Krakowiak, K. Mylkie, A. Marusiak, E. Tykarska, M. Ziegler-Borowska, Materials 15 (2022) 7264 (https://doi.org/10.3390/ma15207264)
H. N. Silva, S. H. Toma, A. L. Hennemann, J. M. Goncalves, M. Nakamura, K. Araki, M. M. Toyama, H. E. Toma, Molecules 27 (2022) 4598 (https://doi.org/10.3390/molecules27144598)
S. A. Lermontova, T. S. Lyubova, I. S. Grigoryev, V. A. Ilichev, V. I. Plekhanov, N. Y. Shilyagina, I. V. Balalaeva, V. P. Boyarskiy, L. G. Klapshina, Russ. J. Gen. Chem. 93 (2023) S672 (https://doi.org/10.1134/S1070363223160053)
A. M. Alsharari, A. A. A. Darwish, M. Rashad, Opt. Mater. 105 (2020) 109870 (https://doi.org/10.1016/j.optmat.2020.109870)
N. Kobayashi, S. Nakajima, H. Ogata, T. Fukuda, Chem.-Eur. J. 10 (2004) 6294 (https://doi.org/10.1002/chem.200400275)
S. Yamazaki, M. Asahi, N. Taguchi, T. Ioroi, J. Electroanal. Chem. 848 (2019) 113321 (https://doi.org/10.1016/j.jelechem.2019.113321)
I. Fringu, D. Anghel, I. Fratilescu, C. Epuran, M. Birdeanu, E. Fagadar-Cosma, Biomedicines 12 (2024) 770 (https://doi.org/10.3390/biomedicines12040770)
A. A. Al-Zubaidi, A. A. A. Elfaki, A. A. A. Darwish, J. Mol. Struct. 1218 (2020) 128499 (https://doi.org/10.1016/j.molstruc.2020.128499)
I. Slobodkin, E. Davydova, M. Sananis, A. Breytus, A. Rothschild, Nat. Mater. 23 (2024) 398 (https://doi.org/10.1038/s41563-023-01767-y)
N. S. Hassan, A. A. Jalil, S. Rajendran, N. F. Khusnun, M. B. Bahari, A. Johari, M. J. Kamaruddin, M. Ismail, Int. J. Hydrogen Energy 52 (2024) 420 (https://doi.org/10.1016/j.ijhydene.2023.09.068)
J. E. Lee, I. Shafiq, M. Hussain, S. S. Lam, G. H. Rhee, Y.-K. Park, Int. J. Hydrogen Energy 47 (2022) 4346 (https://doi.org/10.1016/j.ijhydene.2021.11.065)
H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou, Z. Shao, Energy Environ. Mater. 6 (2023) e12441 (https://doi.org/10.1002/eem2.12441)
Y. Yao, J. Lyu, X. Li, C. Chen, F. Verpoort, J. Wang, Z. Pan, Z. Kou, DeCarbon 5 (2024) 100062 (https://doi.org/10.1016/j.decarb.2024.100062)
X. Xie, L. Du, L. Yan, S. Park, Y. Qiu, J. Sokolowski, W. Wang, Y. Shao, Adv. Funct. Mater. 32 (2022) 2110036 (https://doi.org/10.1002/adfm.202110036)
C. Tian, R. Liu, Y. Zhang, W. Yang, B. Wang, Nano Res. 17 (2024) 982 (https://doi.org/10.1007/s12274-023-6003-5)
N. A. Kamaruzaman, W. M. K. W. M. Zin, K. H. Kamarudin, N. M. Saleh, F. Yusoff, Int. J. Electrochem. Sc. 18 (2023) 100187 (https://doi.org/10.1016/j.ijoes.2023.100187)
Y. Chen, X. Zhao, P. Dong, Y. Zhang, Y. Zou, S. Wang, New Carbon Mater. 39 (2024) 1 (https://doi.org/10.1016/S1872-5805(24)60831-0)
E. Nikoloudakis, A. G. Coutsolelos, E. Stratakis, Energy Fuel 38 (2024) 19222 (https://doi.org/10.1021/acs.energyfuels.4c03322)
L. R. Snyder, J. J. Kirkland, J. L. Glajch, Practical HPLC Method Development, John Wiley & Sons, Hoboken, NJ, 1997 (https://doi.org/10.1002/9781118592014)
Z. Szabadai, L. Sbarcea, L. Udrescu, Analiza fizică și chimică a medicamentului, Victor Babes publishing house, Timisoara, 2016 (ISBN 978-606-786-020-7)
W. Szczolko, T. Koczorowski, B. Wicher, M. Kryjewski, Z. Krakowska, E. Tykarska, T. Goslinski, Dyes Pigments 206 (2022) 110607 (https://doi.org/10.1016/j.dyepig.2022.110607)
E. Gonca, J. Coord. Chem. 70 (2017) 2344 (https://doi.org/10.1080/00958972.2017.1350267)
B.-O. Taranu, F. S. Rus, E. Fagadar-Cosma, Coatings 14 (2024) 1 (https://doi.org/10.3390/coatings14081048)
J. Chang, Q. Lv, G. Li, J. Ge, C. Liu, W. Xing, Appl. Catal., B 204 (2017) 486 (https://doi.org/10.1016/j.apcatb.2016.11.050)
Y. Ge, Z. Lyu, M. Marcos-Hernandez, D. Villagran, Chem. Sci. 13 (2022) 8597 (https://doi.org/10.1039/D2SC01250B)
B.-R. Wulan, S.-S. Yi, S.-J. Li, Y.-X. Duan, J.-M. Yan, X.-B. Zhang, Q. Jiang, Mater. Chem. Front. 2 (2018) 1799 (https://doi.org/10.1039/C8QM00239H)
A. Raveendran, M. Chandran, R. Dhanusuraman, RSC Adv. 13 (2023) 3843 (https://doi.org/10.1039/D2RA07642J)
O. van der Heijden, S. Park, R. E. Vos, J. J. J. Eggebeen, M. T. M. Koper, ACS Energy Lett. 9 (2024) 1871 (https://doi.org/10.1021/acsenergylett.4c00266)
M. K. Mongale, D. A. Isabirye, M. M. Kabanda, T. O. Aiyelabola, E. E. Ebenso, Asian J. Chem. 29 (2017) 496 (https://doi.org/10.14233/ajchem.2017.20205)
J. H. Luo, Q. S. Li, L. N. Yang, Z. Z. Sun, Z. S. Li, RSC Adv. 4 (2014) 20200 (https://doi.org/10.1039/C4RA02204A)
M. E. Ayalew, J. Biophys. Chem. 13 (2022) 29 (https://doi.org/10.4236/jbpc.2022.133003)
K. Arumugam, U. Becker, Minerals 4 (2014) 345 (https://doi.org/10.3390/min4020345)
S. Sarfaraz, M. Yar, A. Hussain, A. Lakhani, A. Gulzar, M. Ans, U. Rashid, M. Hussain, S. Muhammad, I. Bayach, N.S. Sheikh, K. Ayub, ACS Omega 8 (2023) 36493 (https://doi.org/10.1021/acsomega.3c05477)
S. Sarfaraz, M. Yar, N. S. Sheikh, I. Bayach, K. Ayub, ACS omega 8 (2023) 14077 (https://doi.org/10.1021/acsomega.3c00721)
V. K. Kumar, R. Sangeetha, D. Barathi, R. Mathammal, N. Jayamani, Spectrochim. Acta, A 118 (2014) 663 (https://doi.org/10.1016/j.saa.2013.08.089)
X. Li, Y. Du, L. Ge, C. Hao, Y. Bai, Z. Fu, Y. Lu, Z. Cheng, Adv. Funct. Mater. 33 (2023) 1 (https://doi.org/10.1002/adfm.202210194)
B. O. Taranu, S. D. Novaconi, M. Ivanovici, J. N. Goncalves, F. S. Rus, Appl. Sci. (Basel) 12 (2022) 6821 (https://doi.org/10.3390/app12136821)
M. L. F. Ciriaco, M. I. Silva-Pereira, M. R. Nunes, F. M. Costa, Port. Electrochim. Acta 17 (1999) 149 (https://doi.org/10.4152/pea.199902149)
A. Karmakar, S. Kundu, Mater. Today Energy 33 (2023) 1 (https://doi.org/10.1016/j.mtener.2023.101259)
B.-O. Taranu, E. Fagadar-Cosma, P. Sfirloaga, M. Poienar, Energies 16 (2023) 1 (https://doi.org/10.3390/en16031212)
B.-O. Taranu, P. Vlazan, P. Svera, M. Poienar, P. Sfirloaga, J. Alloy. Compd. 892 (2021) 162239 (https://doi.org/10.1016/j.jallcom.2021.162239)
M. Poienar, P. Svera, B.-O. Taranu, C. Ianasi, P. Sfirloaga, G. Buse, P. Veber, P. Vlazan, Crystals 12 (2022) 1803 (https://doi.org/10.3390/cryst12121803)
C. Wan, Y. Ling, S. Wang, H. Pu, Y. Huang, X. Duan, ACS Central Sci. 10 (2024) 658 (https://doi.org/10.1021/acscentsci.3c01439)
F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. van de Krol, S. Calnan, ChemElectroChem 8 (2021) 195 (https://doi.org/10.1002/celc.202001436)
Z. Y. Wu, B. C. Hu, P. Wu, H. W. Liang, Z. L. Yu, Y. Lin, Y. R. Zheng, Z. Li, S. H. Yu, NPG Asia Mater. 8 (2016) e288 (https://doi.org/10.1038/am.2016.87)
S. Seo, K. Lee, M. Min, Y. Cho, M. Kim, H. Lee, Nanoscale 9 (2017) 3969 (https://doi.org/10.1039/c6nr09428g)
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117 (2017) 3717 (https://doi.org/10.1021/acs.chemrev.6b00299)
A. Facchin, C. Durante, Adv. Sustain. Syst. 6 (2022) 2200111 (https://doi.org/10.1002/adsu.202200111)
B. O. Taranu, E. Fagadar-Cosma, Processes 10 (2022) 611 (https://doi.org/10.3390/pr10030611)
B.-O. Taranu, J. Serb. Chem. Soc. 90 (2025) 447 (https://doi.org/10.2298/JSC241004105T)
S. Cui, M. Qian, X. Liu, Z. Sun, P. Du, ChemSusChem 9 (2016) 2365 (https://doi.org/10.1002/cssc.201600452)
H. Jia, Y. Yao, Y. Gao, D. Lu, P. Du, Chem. Commun. 52 (2016) 13483 (https://doi.org/10.1039/C6CC06972J)
J. Liu, C. Wang, H. Sun, H. Wang, F. Rong, L. He, Y. Lou, S. Zhang, Z. Zhang, M. Du, Appl. Catal., B 279 (2020) 1 (https://doi.org/10.1016/j.apcatb.2020.119407)
A. Wang, L. Cheng, X. Shen, W. Zhu, L. Li, Dyes Pigments 181 (2020) 1 (https://doi.org/10.1016/j.dyepig.2020.108568)
G. Cai, L. Zeng, L. He, S. Sun, Y. Tong, J. Zhang, Chem. Asian J. 15 (2020) 1963 (https://doi.org/10.1002/asia.202000083)
A. Wang, L. Cheng, W. Zhao, X. Shen, W. Zhu, J. Colloid Interf. Sci. 579 (2020) 598 (https://doi.org/10.1016/j.jcis.2020.06.109)
L. Chen, R. U. R. Sagar, J. Chen, J. Liu, S. Aslam, F. Nosheen, T. Anwar, N. Hussain, X. Hou, T. Liang, Int. J. Hydrogen Energy 46 (2021) 19338 (https://doi.org/10.1016/j.ijhydene.2021.03.075)
Q. Pan, X. Chen, H. Liu, W. Gan, N. Ding, Y. Zhao, Mater. Chem. Front. 5 (2021) 4596 (https://doi.org/10.1039/D1QM00285F)
B.-O. Taranu, E. Fagadar-Cosma, Nanomaterials (Basel) 12 (2022) 1 (https://doi.org/10.3390/nano12213788)
Y. Wang, D. Song, J. Li, Q. Shi, J. Zhao, Y. Hu, F. Zeng, N. Wang, Inorg. Chem. 61 (2022) 10198 (https://doi.org/10.1021/acs.inorgchem.2c01415)
Y. Dou, X. Yang, Q. Wang, Z. Yang, A. Wang, L. Zhao, W. Zhu, J. Colloid Interf. Sci. 644 (2023) 256 (https://doi.org/10.1016/j.jcis.2023.04.082)
S. Sahoo, E. K. Johnson, X. Wei, S. Zhang, C. W. Machan, Energy Adv. 3 (2024) 2280 (https://doi.org/10.1039/D4YA00257A)
N. Ocuane, Y. Ge, C. Sandoval-Pauker, D. Villagran, Dalton Trans. 53 (2024) 2306 (https://doi.org/10.1039/D3DT03371F)
N. Kousar, Giddaerappa, L. K. Sannegowda, Int. J. Hydrogen Energy 50 (2024) 37 (https://doi.org/10.1016/j.ijhydene.2023.06.296).