Water-splitting electrocatalytic properties and computational characterization of a symmetrically substituted porphyrazine Scientific paper

Main Article Content

Marina Alexandra Tudoran
https://orcid.org/0009-0008-3502-4690
Bogdan-Ovidiu Taranu
https://orcid.org/0000-0003-1515-8065

Abstract

The porphyrazine 2,7,12,17-tetra-tert-butyl-5,10,15,20-tetraaza-21H,23H-porphine was studied regarding its electrocatalytic water-splitting act­ivity in a wide pH range. Two different methods were employed to manufacture electrodes based on this compound: a solution-based method and a catalyst ink-based one. The most catalytically active electrode was obtained using the cat­alyst ink-based method. In 1 mol L-1 KOH solution it displays an H2 evolution reaction overpotential of 0.6 V and a Tafel slope of 0.15 V dec-1. Statistical analysis revealed a significant correlation between the pH and the O2 evolution reaction overpotential. Quantum chemical calculations were performed to obtain a more detailed understanding of the porphyrazine’s properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. A. Tudoran and B.-O. Taranu, “Water-splitting electrocatalytic properties and computational characterization of a symmetrically substituted porphyrazine: Scientific paper”, J. Serb. Chem. Soc., vol. 90, no. 9, pp. 1089–1104, Oct. 2025.
Section
Electrochemistry

References

G. Singh, S. Chandra, Electrochem. Sci. Adv. 3 (2023) e2100149 (https://doi.org/10.1002/elsa.202100149)

A. Ghosh, J. Fitzgerald, P. G. Gassman, J. Almlof, Inorg. Chem. 33 (1994) 6057 (https://doi.org/10.1021/ic00104a014)

P. A. Pinheiro, G. F. M. Pereira, L. O. Cunha, J. P. S. C. Leal, M. E. Alvarenga, F. T. Martins, H. Silva, J. L. S. Milani, T. T. Tasso, Photochem. Photobio. Sci. 23 (2024) 1757 (https://doi.org/10.1007/s43630-024-00629-z)

D.‐P. Medina, J. Fernandez‐Ariza, M. Urbani, F. Sauvage, T. Torres, M. S. Rodriguez‐

-Morgade, Molecules 26 (2021) 2129 (https://doi.org/10.3390/molecules26082129)

T. Koczorowski, B. Wicher, R. Krakowiak, K. Mylkie, A. Marusiak, E. Tykarska, M. Ziegler-Borowska, Materials 15 (2022) 7264 (https://doi.org/10.3390/ma15207264)

H. N. Silva, S. H. Toma, A. L. Hennemann, J. M. Goncalves, M. Nakamura, K. Araki, M. M. Toyama, H. E. Toma, Molecules 27 (2022) 4598 (https://doi.org/10.3390/molecules27144598)

S. A. Lermontova, T. S. Lyubova, I. S. Grigoryev, V. A. Ilichev, V. I. Plekhanov, N. Y. Shilyagina, I. V. Balalaeva, V. P. Boyarskiy, L. G. Klapshina, Russ. J. Gen. Chem. 93 (2023) S672 (https://doi.org/10.1134/S1070363223160053)

A. M. Alsharari, A. A. A. Darwish, M. Rashad, Opt. Mater. 105 (2020) 109870 (https://doi.org/10.1016/j.optmat.2020.109870)

N. Kobayashi, S. Nakajima, H. Ogata, T. Fukuda, Chem.-Eur. J. 10 (2004) 6294 (https://doi.org/10.1002/chem.200400275)

S. Yamazaki, M. Asahi, N. Taguchi, T. Ioroi, J. Electroanal. Chem. 848 (2019) 113321 (https://doi.org/10.1016/j.jelechem.2019.113321)

I. Fringu, D. Anghel, I. Fratilescu, C. Epuran, M. Birdeanu, E. Fagadar-Cosma, Biomedicines 12 (2024) 770 (https://doi.org/10.3390/biomedicines12040770)

A. A. Al-Zubaidi, A. A. A. Elfaki, A. A. A. Darwish, J. Mol. Struct. 1218 (2020) 128499 (https://doi.org/10.1016/j.molstruc.2020.128499)

I. Slobodkin, E. Davydova, M. Sananis, A. Breytus, A. Rothschild, Nat. Mater. 23 (2024) 398 (https://doi.org/10.1038/s41563-023-01767-y)

N. S. Hassan, A. A. Jalil, S. Rajendran, N. F. Khusnun, M. B. Bahari, A. Johari, M. J. Kamaruddin, M. Ismail, Int. J. Hydrogen Energy 52 (2024) 420 (https://doi.org/10.1016/j.ijhydene.2023.09.068)

J. E. Lee, I. Shafiq, M. Hussain, S. S. Lam, G. H. Rhee, Y.-K. Park, Int. J. Hydrogen Energy 47 (2022) 4346 (https://doi.org/10.1016/j.ijhydene.2021.11.065)

H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou, Z. Shao, Energy Environ. Mater. 6 (2023) e12441 (https://doi.org/10.1002/eem2.12441)

Y. Yao, J. Lyu, X. Li, C. Chen, F. Verpoort, J. Wang, Z. Pan, Z. Kou, DeCarbon 5 (2024) 100062 (https://doi.org/10.1016/j.decarb.2024.100062)

X. Xie, L. Du, L. Yan, S. Park, Y. Qiu, J. Sokolowski, W. Wang, Y. Shao, Adv. Funct. Mater. 32 (2022) 2110036 (https://doi.org/10.1002/adfm.202110036)

C. Tian, R. Liu, Y. Zhang, W. Yang, B. Wang, Nano Res. 17 (2024) 982 (https://doi.org/10.1007/s12274-023-6003-5)

N. A. Kamaruzaman, W. M. K. W. M. Zin, K. H. Kamarudin, N. M. Saleh, F. Yusoff, Int. J. Electrochem. Sc. 18 (2023) 100187 (https://doi.org/10.1016/j.ijoes.2023.100187)

Y. Chen, X. Zhao, P. Dong, Y. Zhang, Y. Zou, S. Wang, New Carbon Mater. 39 (2024) 1 (https://doi.org/10.1016/S1872-5805(24)60831-0)

E. Nikoloudakis, A. G. Coutsolelos, E. Stratakis, Energy Fuel 38 (2024) 19222 (https://doi.org/10.1021/acs.energyfuels.4c03322)

L. R. Snyder, J. J. Kirkland, J. L. Glajch, Practical HPLC Method Development, John Wiley & Sons, Hoboken, NJ, 1997 (https://doi.org/10.1002/9781118592014)

Z. Szabadai, L. Sbarcea, L. Udrescu, Analiza fizică și chimică a medicamentului, Victor Babes publishing house, Timisoara, 2016 (ISBN 978-606-786-020-7)

W. Szczolko, T. Koczorowski, B. Wicher, M. Kryjewski, Z. Krakowska, E. Tykarska, T. Goslinski, Dyes Pigments 206 (2022) 110607 (https://doi.org/10.1016/j.dyepig.2022.110607)

E. Gonca, J. Coord. Chem. 70 (2017) 2344 (https://doi.org/10.1080/00958972.2017.1350267)

B.-O. Taranu, F. S. Rus, E. Fagadar-Cosma, Coatings 14 (2024) 1 (https://doi.org/10.3390/coatings14081048)

J. Chang, Q. Lv, G. Li, J. Ge, C. Liu, W. Xing, Appl. Catal., B 204 (2017) 486 (https://doi.org/10.1016/j.apcatb.2016.11.050)

Y. Ge, Z. Lyu, M. Marcos-Hernandez, D. Villagran, Chem. Sci. 13 (2022) 8597 (https://doi.org/10.1039/D2SC01250B)

B.-R. Wulan, S.-S. Yi, S.-J. Li, Y.-X. Duan, J.-M. Yan, X.-B. Zhang, Q. Jiang, Mater. Chem. Front. 2 (2018) 1799 (https://doi.org/10.1039/C8QM00239H)

A. Raveendran, M. Chandran, R. Dhanusuraman, RSC Adv. 13 (2023) 3843 (https://doi.org/10.1039/D2RA07642J)

O. van der Heijden, S. Park, R. E. Vos, J. J. J. Eggebeen, M. T. M. Koper, ACS Energy Lett. 9 (2024) 1871 (https://doi.org/10.1021/acsenergylett.4c00266)

M. K. Mongale, D. A. Isabirye, M. M. Kabanda, T. O. Aiyelabola, E. E. Ebenso, Asian J. Chem. 29 (2017) 496 (https://doi.org/10.14233/ajchem.2017.20205)

J. H. Luo, Q. S. Li, L. N. Yang, Z. Z. Sun, Z. S. Li, RSC Adv. 4 (2014) 20200 (https://doi.org/10.1039/C4RA02204A)

M. E. Ayalew, J. Biophys. Chem. 13 (2022) 29 (https://doi.org/10.4236/jbpc.2022.133003)

K. Arumugam, U. Becker, Minerals 4 (2014) 345 (https://doi.org/10.3390/min4020345)

S. Sarfaraz, M. Yar, A. Hussain, A. Lakhani, A. Gulzar, M. Ans, U. Rashid, M. Hussain, S. Muhammad, I. Bayach, N.S. Sheikh, K. Ayub, ACS Omega 8 (2023) 36493 (https://doi.org/10.1021/acsomega.3c05477)

S. Sarfaraz, M. Yar, N. S. Sheikh, I. Bayach, K. Ayub, ACS omega 8 (2023) 14077 (https://doi.org/10.1021/acsomega.3c00721)

V. K. Kumar, R. Sangeetha, D. Barathi, R. Mathammal, N. Jayamani, Spectrochim. Acta, A 118 (2014) 663 (https://doi.org/10.1016/j.saa.2013.08.089)

X. Li, Y. Du, L. Ge, C. Hao, Y. Bai, Z. Fu, Y. Lu, Z. Cheng, Adv. Funct. Mater. 33 (2023) 1 (https://doi.org/10.1002/adfm.202210194)

B. O. Taranu, S. D. Novaconi, M. Ivanovici, J. N. Goncalves, F. S. Rus, Appl. Sci. (Basel) 12 (2022) 6821 (https://doi.org/10.3390/app12136821)

M. L. F. Ciriaco, M. I. Silva-Pereira, M. R. Nunes, F. M. Costa, Port. Electrochim. Acta 17 (1999) 149 (https://doi.org/10.4152/pea.199902149)

A. Karmakar, S. Kundu, Mater. Today Energy 33 (2023) 1 (https://doi.org/10.1016/j.mtener.2023.101259)

B.-O. Taranu, E. Fagadar-Cosma, P. Sfirloaga, M. Poienar, Energies 16 (2023) 1 (https://doi.org/10.3390/en16031212)

B.-O. Taranu, P. Vlazan, P. Svera, M. Poienar, P. Sfirloaga, J. Alloy. Compd. 892 (2021) 162239 (https://doi.org/10.1016/j.jallcom.2021.162239)

M. Poienar, P. Svera, B.-O. Taranu, C. Ianasi, P. Sfirloaga, G. Buse, P. Veber, P. Vlazan, Crystals 12 (2022) 1803 (https://doi.org/10.3390/cryst12121803)

C. Wan, Y. Ling, S. Wang, H. Pu, Y. Huang, X. Duan, ACS Central Sci. 10 (2024) 658 (https://doi.org/10.1021/acscentsci.3c01439)

F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. van de Krol, S. Calnan, ChemElectroChem 8 (2021) 195 (https://doi.org/10.1002/celc.202001436)

Z. Y. Wu, B. C. Hu, P. Wu, H. W. Liang, Z. L. Yu, Y. Lin, Y. R. Zheng, Z. Li, S. H. Yu, NPG Asia Mater. 8 (2016) e288 (https://doi.org/10.1038/am.2016.87)

S. Seo, K. Lee, M. Min, Y. Cho, M. Kim, H. Lee, Nanoscale 9 (2017) 3969 (https://doi.org/10.1039/c6nr09428g)

W. Zhang, W. Lai, R. Cao, Chem. Rev. 117 (2017) 3717 (https://doi.org/10.1021/acs.chemrev.6b00299)

A. Facchin, C. Durante, Adv. Sustain. Syst. 6 (2022) 2200111 (https://doi.org/10.1002/adsu.202200111)

B. O. Taranu, E. Fagadar-Cosma, Processes 10 (2022) 611 (https://doi.org/10.3390/pr10030611)

B.-O. Taranu, J. Serb. Chem. Soc. 90 (2025) 447 (https://doi.org/10.2298/JSC241004105T)

S. Cui, M. Qian, X. Liu, Z. Sun, P. Du, ChemSusChem 9 (2016) 2365 (https://doi.org/10.1002/cssc.201600452)

H. Jia, Y. Yao, Y. Gao, D. Lu, P. Du, Chem. Commun. 52 (2016) 13483 (https://doi.org/10.1039/C6CC06972J)

J. Liu, C. Wang, H. Sun, H. Wang, F. Rong, L. He, Y. Lou, S. Zhang, Z. Zhang, M. Du, Appl. Catal., B 279 (2020) 1 (https://doi.org/10.1016/j.apcatb.2020.119407)

A. Wang, L. Cheng, X. Shen, W. Zhu, L. Li, Dyes Pigments 181 (2020) 1 (https://doi.org/10.1016/j.dyepig.2020.108568)

G. Cai, L. Zeng, L. He, S. Sun, Y. Tong, J. Zhang, Chem. Asian J. 15 (2020) 1963 (https://doi.org/10.1002/asia.202000083)

A. Wang, L. Cheng, W. Zhao, X. Shen, W. Zhu, J. Colloid Interf. Sci. 579 (2020) 598 (https://doi.org/10.1016/j.jcis.2020.06.109)

L. Chen, R. U. R. Sagar, J. Chen, J. Liu, S. Aslam, F. Nosheen, T. Anwar, N. Hussain, X. Hou, T. Liang, Int. J. Hydrogen Energy 46 (2021) 19338 (https://doi.org/10.1016/j.ijhydene.2021.03.075)

Q. Pan, X. Chen, H. Liu, W. Gan, N. Ding, Y. Zhao, Mater. Chem. Front. 5 (2021) 4596 (https://doi.org/10.1039/D1QM00285F)

B.-O. Taranu, E. Fagadar-Cosma, Nanomaterials (Basel) 12 (2022) 1 (https://doi.org/10.3390/nano12213788)

Y. Wang, D. Song, J. Li, Q. Shi, J. Zhao, Y. Hu, F. Zeng, N. Wang, Inorg. Chem. 61 (2022) 10198 (https://doi.org/10.1021/acs.inorgchem.2c01415)

Y. Dou, X. Yang, Q. Wang, Z. Yang, A. Wang, L. Zhao, W. Zhu, J. Colloid Interf. Sci. 644 (2023) 256 (https://doi.org/10.1016/j.jcis.2023.04.082)

S. Sahoo, E. K. Johnson, X. Wei, S. Zhang, C. W. Machan, Energy Adv. 3 (2024) 2280 (https://doi.org/10.1039/D4YA00257A)

N. Ocuane, Y. Ge, C. Sandoval-Pauker, D. Villagran, Dalton Trans. 53 (2024) 2306 (https://doi.org/10.1039/D3DT03371F)

N. Kousar, Giddaerappa, L. K. Sannegowda, Int. J. Hydrogen Energy 50 (2024) 37 (https://doi.org/10.1016/j.ijhydene.2023.06.296).