Development of a glass–ceramic composite reinforced with β-wollastonite synthesized via a hydrothermal method Scientific paper

Main Article Content

Marjan S. Ranđelović
https://orcid.org/0000-0002-4506-7562
Charles Sorrell
Sharon Koppka
Aleksandra Zarubica
Milan Momčilović
Dirk Enke
https://orcid.org/0000-0001-6610-2948

Abstract

β-wollastonite (β-CaSiO3) microfibres were successfully synthesized using a one-step, template-free hydrothermal reaction involving calcium nitrate and sodium metasilicate in an alkaline medium. The synthesis of microfibres was completed at 220 °C within only 240 min under an autogenous pressure of 19 bar (1.9 MPa). This method avoids the formation of xonotlite as an intermediate phase, elimin­ating the need for subsequent calcination to achieve wollastonite. X-ray diffraction (XRD) confirmed the β-wollastonite phase, while post-cal­cination analyses indicated enhanced crystallinity and structural characteristics. Scanning electron microscopy (SEM) revealed a needle-like morphology and N2 adsorption-desor­ption analysis demonstrated a developed surface area of 26 m2 g-1 with notable mesoporosity. These advantageous features facilitated the integ­ration of β-wollas­tonite into the synthesis of a glass–ceramic composite, which was characterized for its morphological, structural, textural, and in vitro bioact­ivity properties. The composite was prepared by mixing β-wollastonite and bio­active glass powders in a 1:4 mass ratio, followed by compaction through uni­axial pressing and sintering at 1000 °C for various time intervals. For com­parison, compacted pure bioactive glass samples were also sintered under iden­tical conditions. Structural, morphological, textural and in vitro bioactivity char­acterizations demonstrated that the incorporation of β-wollastonite led to a more uniform and narrower pore size distribution and promoted neck formation between particles, indicating its potential for bone regeneration applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. S. Ranđelović, C. Sorrell, S. Koppka, A. Zarubica, M. Momčilović, and D. Enke, “Development of a glass–ceramic composite reinforced with β-wollastonite synthesized via a hydrothermal method: Scientific paper”, J. Serb. Chem. Soc., Dec. 2025.
Section
Materials

Funding data

References

C. C. Lin, P. Shen, Mater. Chem. Phys. 182 (2016) 508 (https://doi.org/10.1016/j.matchemphys.2016.07.065)

E. Mazzucato, A. F. Gualtieri, Phys. Chem. Miner. 27 (2000) 565 (https://doi.org/10.1007/s002690000095)

K. Lin, J. Chang, G. Chen, M. Ruan, C. Ning, J. Cryst. Growth 300 (2007) 267 (https://doi.org/10.1016/j.jcrysgro.2006.11.215)

K. Lin, C. Lin, Y. Zeng, RSC Adv. 6 (2016) 13867 (https://doi.org/10.1039/c5ra26916d)

M. A. Abdelwahab, A Reflexive Reading of Urban Space, 1st ed., eBook ISBN 9781315565125, Taylor and Francis, London, 2018

N. Obradović, S. Filipović, S. Marković, M. Mitrić, J. Rusmirović, A. Marinković, V. Antić, V. Pavlović, Ceram. Int. 43 (2017) 7461 (https://doi.org/10.1016/j.ceramint.2017.03.021)

W. K. Lam, J. C. Y. Leong, Y. H. Li, Y. Hu, W. W. Lu, Gait Posture 22 (2005) 189 (https://doi.org/10.1016/j.gaitpost.2004.09.011)

V. S. Topalović, S. R. Grujić, V. D. Živanović, S. D. Matijašević, J. D. Nikolić, J. N. Stojanović, S. V. Smiljanić, Ceram. Int. 43 (2017) 12061 (https://doi.org/10.1016/j.ceramint.2017.06.061)

M. Riaz, R. Zia, A. Mirza, T. Hussain, F. Bashir, S. Anjum, Mater. Sci. Eng., C 75 (2017) 872 (https://doi.org/10.1016/j.msec.2017.02.141)

L. Adams, E. R. Essien, R. O. Shaibu, A. Oki, New J. Glass Ceram. 3 (2013) 11 (http://dx.doi.org/10.4236/njgc.2013.31003)

A. Logeshwaran, R. Elsen, S. Nayak, J. Mech. Behav. Biomed. Mater. 138 (2023) 105633 (https://doi.org/10.1016/j.jmbbm.2022.105633)

A. Iatsenko, O. Sych, A. Nikolenko, S. Stelmakh, Results Surf. Interfaces. 16 (2024) 100265 (https://doi.org/10.1016/j.rsurfi.2024.100265)

I. W. Suh, S. R. Jang, E. M. Hia, C. H. Park, C. S. Kim, Mater. Chem. Phys. 326 (2024) 129865 (https://doi.org/10.1016/j.matchemphys.2024.129865)

E. Zeimaran, S. Pourshahrestani, S. F .S. Shirazi, B. Pingguan-Murphy, N. A. Kadri, M.R. Towler, J. Non-Cryst. Solids 443 (2016) 118 (https://doi.org/10.1016/j.jnoncrysol.2016.04.005)

H. Ismail, R. Shamsudin, M. A. A. Hamid, Mater. Sci. Eng., C 58 (2016) 1077 (https://doi.org/10.1016/j.msec.2015.09.030)

B. Chaudhary, Y.K. Kshetri, D.R. Dhakal, S. W. Lee, T. H. Kim, Opt. Mater. 135 (2023) 113326 (https://doi.org/10.1016/j.optmat.2022.113326)

J. Zhu, T. Qu, S. Niu, J. Liu, S. Liu, J. Geng, Z. Yang, A. Abulizi, Mater. Today Sustain. 26 (2024) 100716 (https://doi.org/10.1016/j.mtsust.2024.100716)

A. Sobhani, E. Salimi, Ceram. Int. 50 (2024) 26869 (https://doi.org/10.1016/j.ceramint.2024.04.417)

S. Palakurthy, S. Patel, K. V. Reddy, R. Samudrala, C. Padala, B. Manavathi, P. A. Azeem, Ceram. Int. 49 (2023) 36344 (https://doi.org/10.1016/j.ceramint.2023.08.318)

C. Paluszkiewicz, M. Blażewicz, J. Podporska, T. Gumuła, Vibr. Spectrosc. 48 (2008) 263 (https://doi.org/10.1016/j.vibspec.2008.02.020).

Most read articles by the same author(s)