Adsorption of clofibric acid by the activated carbon prepared with polyester cloth waste: Study of the operational parameters, kinetic and adsorptive equilibrium using the nοn-linear methοd
Main Article Content
Abstract
The objective of this research work is to examine the feasibility of preparing adsorbent materials from textile waste (polyester) for the elimination of pharmaceutical products such as clofibric acid (CA). The results showed that the adsorbents prepared by chemical activation in the presence of phosphoric acid followed by pyrolysis at 600 °C conduct to microporous materials with large specific surfaces. Batch experiments were conducted to study the effect of contact time, initial CA concentration, solution pH and temperature. Elimination yields by adsorption of CA in aqueous solution greater than 95% are obtained with dilute solutions (10 mg L-1) at room temperature and at pH=3. The adsorption kinetic is perfectly described by the pseudo-second-order model and the isotherms are of Freundlich types. The results indicate that this process is spontaneous, efficient and potentially applicable in the removal of CA from water.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
A. V. Dordio, C. Duarte, M. Barreiros, A. J. P. Carvalho, A. P. Pinto, C. T. da Costa, Bioresour. Technol. 100 (2009) 1156–1161 (http://doi.org/10.1016/j.biortech.2008.08.034)
V. Rakić, V. Rac, M. Krmar, O. Otman, A. Auroux, J. Hazard. Mater. 282 (2015) 141–149 (http://doi.org/10.1016/j.jhazmat.2014.04.062)
N. Boudrahem, F. Aissani-Benissad, F. Boudrahem, C. Vial, F. Audonnet, L. Favier, Water Sci. Technol. 82 (2020) 2513–2524 (http://doi.org/10.2166/wst.2020.524)
M. E. Ramos, P. R. Bonelli, S. Blacher, M. M. L. Ribeiro Carrott, P. J. M. Carrott, A. L. Cukierman, Coll. Surf. A Physicochem. Eng. Asp. 378 (2011) 87–93 (http://doi.org/10.1016/j.colsurfa.2011.02.005)
Y. Sun, Q. Yue, B. Gao, Q. Li, L. Huang, F. Yao, X. Xu, J. Colloid Interface Sci. 368 (2012) 521–527 (http://doi.org/10.1016/j.jcis.2011.10.067)
A. C. Pastor, F. Rodríguez-Reinoso, H. Marsh, M. A. Martínez, Carbon 37 (1999) 1275–1283 (http://doi.org/10.1016/S0008-6223(98)00324-8)
C. F. Brasquet, B. Bourges, P. L. Cloirec, Environ. Sci. Technol. 33 (1999) 4226-4231 (https://doi.org/10.1021/es981358m)
C. F. Brasquet, P. L. Cloirec, Langmuir 15 (1999) 5906–5912 (https://doi.org/10.1021/la9811160)
E. Ayranci, O. Duman, J. Hazard. Mater. 124 (2005) 125–132 (https://doi.org/10.1016/j.jhazmat.2005.04.020)
J. R. Rangel-Mendez, M. Streat, Water Res. 36 (2002) 1244–1252 (https://doi.org/10.1016/S0043-1354(01)00343-8)
M. A. Álvarez-Merino, V. López-Ramón, J. Colloid Interface Sci. 288 (2005) 335–341 (https://doi.org/10.1016/j.jcis.2005.03.025)
F. Akkouche, F. Boudrahem, I. Yahiaoui, C. Vial, F. Audonnet, F. Aissani-Benissad, Water Environ. Res. 39 (2021) 464-478 (https://doi.org/10.1002/wer.1449)
L. Khenniche, F. Aissani, J. Chem. Eng. Data 55 (2010) 728–734 (http://doi.org/10.1021/je900426a)
Y. Guo, D. A. Rockstraw, Carbon 44 (2006) 1464–1475 (http://doi.org/10.1016/j.carbon.2005.12.002)
M. E. Ramos, P. R. Bonelli, A. L. Cukierman, Coll. Surf. A Physicochem. Eng. Asp. 324 (2008) 86–92 (https://doi.org/10.1016/j.colsurfa.2008.03.034)
Y. Chen, S. R. Zhai, N. Liu, Y. Song, Q. Da An, X. W. Song, Bioresour. Technol. 144 (2013) 401–409 (http://doi.org/10.1016/j.biortech.2013.07.002)
I. I. Gurten, M. Ozmak, E. Yagmur, Z. Aktas, Biomass and Bioenergy 37 (2012) 73–81 (https://doi.org/10.1016/j.biombioe.2011.12.030)
K. Y. Foo, B. H. Hameed, Chem. Eng. J. 180 (2012) 66–74 (http://doi.org/10.1016/j.cej.2011.11.002)
J. Zheng, Q. Zhao, Z. Ye, Appl. Surf. Sci. 299 (2014) 86–91 (http://doi.org/10.1016/j.apsusc.2014.01.190)
S. M. Yakout, G. Sharaf El-Deen, Arab. J. Chem. 9 (2016) S1155–S1162 (http://doi.org/10.1016/j.arabjc.2011.12.002)
N. Boudrahem, S. Delpeux-Ouldriane, L. Khenniche, F. Boudrahem, F. Aissani-Benissad, M. Gineys, Process Saf. Environ. Prot. 111 (2017) 544–559 (http://doi.org/10.1016/j.psep.2017.08.025)
K. Yahiaoui, F. Boudrahem, S. Ziani, I. Yahiaoui, F. Aissani-Benissad, Int. J. Environ. Anal. Chem. 102 (2022) 6670–6683 (http://doi.org/10.1080/03067319.2020.1814272)
P. Del Vecchio, N. K. Haro, F. S. Souza, N. R. Marcílio, L. A. Féris, Water Sci. Technol. 79 (2019) 2013–2021 (http://doi.org/10.2166/wst.2019.205)
C. H. Giles, T. H. MacEwan, S. N. Nakhwa, D. Smith, J. Chem. Soc. 846 (1960) 3973–3993 (http://doi.org/10.1039/JR9600003973)
F. Boudrahem, F. Aissani-Benissad, A. Soualah, Desalin. Water Treat. 54 (2015) 1727–1734 (http://doi.org/10.1080/19443994.2014.888686)
A. S. Mestre, M. L. Pinto, J. Pires, J. M. F. Nogueira, A. P. Carvalho, Carbon 48 (2010) 972–980 (http://doi.org/10.1016/j.carbon.2009.11.013)
R. A. Reza, M. Ahmaruzzaman, A. K. Sil, V. K. Gupta, Ind. Eng. Chem. Res. 53 (2014) 9331–9339 (http://doi.org/10.1021/ie404162p)
X. Lu, Y. Shao, N. Gao, J. Chen, Y. Zhang, Q. Wang, Y. Lu, Chemosphere 161 (2016) 400–411 (http://doi.org/10.1016/j.chemosphere.2016.07.025)
Z. Hasan, J. Jeon, S. H. Jhung, J. Hazard. Mater. 209–210 (2012) 151–157 (http://doi.org/10.1016/j.jhazmat.2012.01.005).