A novel Zn(Ⅱ) coordination compound exhibits selective and sensitive detection of Fe3+ and acetylacetone Scientific paper
Main Article Content
Abstract
Pyridine derivatives have strong coordination ability, tunable electronic, optical properties and excellent stability as ligands. Their substituent engineering and conjugation extension provides an ideal platform for the construction of efficient fluorescent probes, catalysts and biological functional materials. Based on this, a new coordination compound [Zn(phen)(L)(H2O)]·4H2O was synthesized under solvothermal conditions used 1,10-phenanthroline (phen), 3-carboxy-1-carboxymethyl-2-oxidopyridinium (H2L) and Zn(Ⅱ). The crystal structure and composition of the coordination compound were confirmed by single crystal X-ray diffraction and thermogravimetric analysis. Structural analysis confirmed by single crystal X-ray diffraction reveals its unique coordination geometry. In addition, it exhibits significant luminescence, making it a candidate for sensing applications. The luminescence and sensing properties of the coordination compound were investigated in detail. The Ksv values for the detection of Fe3+ and acac were found to be 3.29×10 5 and 6.67×105 M-1, which confirmed the high and efficient sensing ability of the synthesized sensor.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Jilin Provincial Scientific and Technological Development Program
Grant numbers YDZJ202501ZYTS454
References
M. S. Wang, X. T. Liu, B. C. Pan, S. J. Zhang, Chemosphere 93 (2013) 2877 (https://doi.org/10.1016/j.chemosphere.2013.08.082)
S. Yao, H. Xu, T. Zheng, Y. Li, H. Huang, J. Wang, J. Chen, S. Liu, H. Wen, Chin. Chem. Lett. 34.4 (2023) 107532 https://doi.org/10.1016/j.cclet.2022.05.046
Y. N. Wang, H. Xu, S. D. Wang, R. Y. Mao, L. M. Wen, S. Y. Wang, L. J. Liu, Y. Sun, S. Q. Liu, F. Wang, Q. F. Yang, Spectrochim. Acta, A 286 (2023) 121952 (https://doi.org/10.1016/j.saa.2022.121952)
X. Zhang, X. Zhuang, N. Zhang, C. Ge, X. Luo, J. Li, J. Wu, Q. Yang, R. Liu, CrystEngComm 21 (2019) 1948 (https://doi.org/10.1039/c9ce00068b)
W. Liu, H. Cui, J. Zhou, X. Chen, H. Yang, J. Wang, J. Mol. Struct. 1302 (2024) 137468 (https://doi.org/10.1016/j.molstruc.2023.137468)
L. L. Liu, H. W. Zhang, J. Y. Ren, L. Wang, Y. Zhang, Spectrochim. Acta, A 331 (2025) 125762 (https://doi.org/10.1016/j.saa.2025.125762)
Z. ul Nisa, M. Ahmad, H. N. Sheikh, New J. Chem. 48 (2024) 3100 (https://doi.org/10.1039/D3NJ05433K)
B. Zhao, J. Lu, H. Liu, S. Li, Q. Sun, B. Zhang, CrystEngComm 26 (2024) 1319 (https://doi.org/10.1039/D3CE01174G)
Á. González-Domínguez, F. M. Visiedo-García, J. Domínguez-Riscart, R. González-
-Domínguez, R. M. Mateos, A. M. Lechuga-Sancho, Int. J. Mol. Sci. 21 (2020) 5529 (https://doi.org/10.3390/ijms21155529)
J. B. Araškov, A. Višnjevac, J. Popović, V. Blagojević, H. S. Fernandes, S. F. Sousa, I. Novaković, J. M. Padrón, B. B. Holló, M. Monge, M. Rodríguez-Castill, CrystEngComm 24.29 (2022) 5194 (https://doi.org/10.1039/D2CE00443G)
C. Bizzarri, E. Spuling, D. M. Knoll, D. Volz, S. Bräse, Coord. Chem. Rev. 373 (2018) 49 (https://doi.org/10.1016/j.ccr.2017.09.011)
P. Ristić, T. R. Todorovic, V. Blagojević, O. R. Klisuric, I. Marjanovic, B. B. Holló, P. Vulic, M. Gulea, M. Donnard, M. Monge, M. Rodríguez-Castillo, Cryst. Growth Des. 20 (2020) 4461 (https://doi.org/10.1021/acs.cgd.0c00287)
R. A. Khan, A. AlFawaz, I. Hasan, N. A. AlMuryyi, A. A. Alhamed, S. Laeeq, A. Alsalme, New J. Chem. 48 (2024) 1287 (https://doi.org/10.1039/D3NJ04709A)
J. Suebphanpho, J. Boonmak, RSC Adv. 14 (2024) 9781 (https://doi.org/10.1039/D4RA00500G)
G.M. Otero-Fuentes, V. Sánchez-Mendieta, A. Sánchez-Ruiz, R. A. Morales-Luckie, D. Martínez-Otero, J. Jaramillo-García, A. Dorazco-González, J. Fluoresc. 35 (2024) 3449 (https://doi.org/10.1007/s10895-024-03754-1)
K. X. Ma, Y. Y. Yuan, Y. T. Ren, Y. Yang, H. G. Hao, J. Lu, S. N. Wang, ACS Appl. Nano Mater. 7 (2024) 19448 (https://doi.org/10.1021/acsanm.4c03335)
M. T. Seuffert, A. E. Sedykh, T. C. Schäfer, J. Becker, K. Müller-Buschbaum, Dalton Trans. 54 (2025) 5075 (https://doi.org/10.1039/D4DT03149K)
M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, G. Polidori, J. Appl. Crystallogr. 48 (2025) 306 (https://doi.org/10.1107/S1600576715001132)
G. M. Sheldrick, Cryst. Struct. Chem. 71 (2015) 3 (https://dx.doi.org/10.1107/S2053229614024218)
W. Liu, H. Cui, J. Zhou, X. Chen, H. Yang, J. Wang, J. Mol. Struct. 1302 (2024) 137468 (https://doi.org/10.1016/j.molstruc.2023.137468)
H. Wang, S. Li, H. Zhang, B. Su, X. Wang, Main Group Met. Chem. 48 (2025) 20240029 (https://doi.org/10.1515/mgmc-2024-0029)
X. Li, Y. Huang, B. Liu, X. Wang, Main Group Met. Chem. 48 (2025) 20240013 (https://doi.org/10.1515/mgmc-2024-0013)
Y. Hanifehpour, B. Mirtamizdoust, J. Dadashi, R. Wang, M. Rezaei, M. Abdolmaleki, S. W. Joo, Crystals 12 (2022) 113 (https://doi.org/10.3390/cryst12010113)
L. Gao, C. Jiao, H. Chai, Y. Ren, G. Zhang, H. Yu, L. Tang, 284 (2020) 121199, J. Solid State Chem. 284 (2020) 121199 (https://doi.org/10.1016/j.jssc.2020.121199).