Spectral characterization and antimicrobial activity studies of 5,6-dichloro-1H-benzimidazol-2-yl-(4'/5'/6'-substituted)-phenols (HL1 – HL20) and Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes of HL1

Main Article Content

Aydin Tavman
https://orcid.org/0000-0001-7153-5350
Demet Gürbüz
https://orcid.org/0000-0002-4679-7890
Mayram Hacioglu
https://orcid.org/0000-0003-0823-631X
Adem Cinarli
https://orcid.org/0000-0003-3168-8058
Onur Sahin
https://orcid.org/0000-0003-3765-3235
A. Seher Birteksöz Tan
https://orcid.org/0000-0001-8767-710X

Abstract

5,6-Dichloro-1H-benzimidazol-2-yl-(4'/5'/6'-substituted)-phenols (HL1HL20) and MCl2 complexes (M: Co, Ni, Cu, Zn, Pd) of HL1 were synthesized and characterized by various physico-chemical and spectroscopic methods such as elemental analysis, thermogravimetric analysis, FTIR, NMR and fluorescence spectroscopy. The structures of the complexes were also confirmed by performing molar conductivity and magnetic moment measurements. HL1 acted as a bidentate, monobasic chelating ligand with NO donor sites in all the complexes. It was found that all complexes have non-electrolytic properties and the M:L ratios are 1:1 in the Zn(II) complex and 1:2 in the other complexes. Crystal structure of HL18 was also investigated. The presence of both intra- and inter-molecular hydrogen bonding was observed in both molecules. According to the fluorescence spectral data, the substituents at the 4-position made the fluorescence emission shifted to the lower wavelengths (redshift) compared to HL1, while the substituents at the 3- and 5-positions caused a blueshift effect. The Zn(II) complex showed a greater redshift effect compared to the other complexes. In addition, antimicrobial activity of the compounds was evaluated against six bacteria and three fungi. It was observed that HL1 and its mono substituted derivatives (HL1HL11) show selective activity especially against Gram positive bacteria, S. aureus and S. epidermidis. Zn(II) complex showed relatively higher activity against Gram positive bacteria differently from the other complexes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Tavman, D. Gürbüz, M. Hacioglu, A. Cinarli, O. . Sahin, and A. S. Birteksöz Tan, “Spectral characterization and antimicrobial activity studies of 5,6-dichloro-1H-benzimidazol-2-yl-(4’/5’/6’-substituted)-phenols (HL1 – HL20) and Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes of HL1”, J. Serb. Chem. Soc., Oct. 2025.
Section
Inorganic Chemistry
Author Biography

Aydin Tavman, Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, 34320 Avcilar, Istanbul, Türkiye

Department of Chemistry

Inorganic Chemistry Division

Funding data

References

M. Rasschaert, D. Schrijvers, J. van den Brande, J. Dyck, J. Bosmans, K. Merkle, J. B. Vermorken, Br. J. Cancer 96 (2007) 1692 (https://doi.org/10.1038/sj.bjc.6603776)

M. Montillo, F. Ricci, A. Tedeschi, E. Vismara, E. Morra, Expert Rev. Hematol. 3 (2010) 131 (https://doi.org/10.1586/ehm.10.7)

C. S. P. Sastry, P. Y. Naidu, S. S. N. Murty, Talanta 44 (1997) 1211 (https://doi.org/10.1016/S0039-9140(97)83117-7)

C. Delescluse, M. P. Piechock, N. Ledirac, R. H. Hines, R. Li, X. Gidrol, R. Rahmani, Biochem. Pharmacol. 61 (2001) 399 (https://doi.org/10.1016/S0006-2952(00)00562-1)

K. K. Mothilal, C. Karunakaran, A. Rajendran, R. Murugesan, J. Inorg. Biochem. 98 (2004) 322 (https://doi.org/10.1016/j.jinorgbio.2003.10.017)

E. J. Cardoso, A. F. Luna, J. P. Urizar, Acta Tropica 92 (2004) 237 (https://doi.org/10.1016/j.actatropica.2004.08.003)

M. Savlik, P. Polaskova, B. Szotakova, J. Lamka, L. Skalova, Res. Vet. Sci. 79 (2005) 139 (https://doi.org/10.1016/j.rvsc.2004.10.007)

R. G. Almeida, J. C. Florio, H. S. Spinosa, M. M. Bernardi, Neurotoxicol. Teratol. 24 (2002) 255 (https://doi.org/10.1016/S0892-0362(02)00203-9)

J. Gronvold, T. S. Svendsen, H. O. Kraglund, J. Bresciani, J. Monrad, Vet. Parasitol. 124 (2004) 91 (https://doi.org/10.1016/j.vetpar.2004.06.003)

B. Pathare, T. Bansode, Results Chem. 3 (2021) 100200 (https://doi.org/10.1016/j.rechem.2021.100200)

S. R. Brishty, M. J. Hossain, M. U. Khandaker, M. R. I. Faruque, H. Osman, S. M. A. Rahman, Front. Pharmacol. 12 (2021) 762807 (https://doi.org/10.3389/fphar.2021.762807)

G. R. Morais, E. Palma, F. Marques, L. Gano, M. C. Oliveira, A. Abrunhosa, H. V. Miranda, A. Paulo, T. F. Outeiro, I. Santos, J. Heterocycl. Chem. 54 (2015) 255 (https://doi.org/10.1002/jhet.2575)

R. Sharma, A. Bali, B. Chandhari, Bioorg. Med. Chem. Lett. 27 (2017) 3007 (https://doi.org/10.1016/j.bmcl.2017.05.017)

A. S. Alpan, S. Parlar, L. Carlino, A. H. Tarikogullari, V. Alptüzün, H. S. Güneş, Bioorg. Med. Chem. 21 (2013) 4928 (https://doi.org/10.1016/j.bmc.2013.06.065)

R. Bonnett, Chem. Rev. 63 (1963) 573 (https://doi.org/10.1021/cr60226a002)

W. Y. Zhu, K. Liu, X. Zhang, Sens. Diagn. 2 (2023) 665 (https://doi.org/10.1039/D3SD00020F)

R. Sathyanarayana, V. Kumar, G. H. Pujar, B. Poojary, M. K. Shankar, S. Yallappa, J. Photochem. Photobiol. A: Chem. 402 (2020) 112751 (https://doi.org/10.1016/j.jphotochem.2020.112751)

A. Tavman, D. Gürbüz, A. A. Karaçelik, D. N. Çolak, D. Efe, A. Cinarli, Rev. Roum. Chim. 69 (2024) 201 (https://doi.org/10.33224/rrch.2024.69.3-4.10)

A. Tavman, I. Boz, A. S. Birteksöz, Spectrochim. Acta A77 (2010) 199 (https://doi.org/10.1016/j.saa.2010.05.008)

A. Tavman, I. Boz, A. S. Birteksöz, A. Cinarli, J. Coord. Chem. 63 (2010) 1398 (https://doi.org/10.1080/00958971003789835)

A. Tavman, D. Gürbüz, S. Oksüz, A. Cinarli, Mor. J. Chem. 6 (2018) 328 (https://doi.org/10.48317/IMIST.PRSM/morjchem-v6i2.7909)

L. Wang, C. X. Zhang, J. Q. Zhao, Chinese J. Struct. Chem. 33 (2014) 1479 (https://caod.oriprobe.com/articles/43884889/Synthesis__Structure_and_Catalytic_Activity_of_a_M.htm)

M. Haghverdi, A. Tadjarodi, N. Bahri-Laleh, M. N. Haghighi, J. Coord. Chem. 71 (2018)1180 (https://doi.org/10.1080/00958972.2018.1446527)

M. Haghverdi, A. Tadjarodi, N. Bahri-Laleh, M. N. Haghighi, Appl. Organomet. Chem. 32 (2018) e4015 (https://doi.org/10.1002/aoc.4015)

T. K. C. Huynh, T. H. A. Nguyen, T. C. T. Nguyen, T. K. D. Hoang, RSC Adv. 10 (2020) 20543 (https://doi.org/10.1039/D0RA02282A)

M. M. Karpinska, J. Matysiak, A. Niewiadomy, Arch. Pharm. Res. 34 (2011) 1639 (https://doi.org/10.1007/s12272-011-1008-0)

H. F. Ridley, G. W. Spickett, G. M. Timmis, J. Het. Chem. 2 (1965) 453 (https://doi.org/10.1002/jhet.5570020424)

Z. Karimi-Jaberi, M. Amir, J. Chem. 9 (2012) 167 (https://doi.org/10.1155/2012/793978)

M27-A3: Clinical and Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. (2012)

M100-Ed.31: Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial (2021)

G. M. Sheldrick, Acta Cryst. A64 (2008) 112 (https://doi.org/10.1107/S0108767307043930)

G. M. Sheldrick, Acta Cryst. C71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)

APEX2: Bruker AXS Inc. Madison Wisconsin USA (2013)

C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 41 (2008) 466 (https://doi.org/10.1107/S0021889807067908)

L. J. Farrugia, J. Appl. Cryst. 45 (2012) 849 (https://doi.org/10.1107/S0021889812029111)

W. Geary, Coord. Chem. Rev. 7 (1971) 81 (https://doi.org/10.1016/S0010-8545(00)80009-0)

D. Lomjanský, C. Rajnák, J. Titis, J. Monco, L. Smolko, R. Boča, Inorg. Chim. Acta 483 (2018) 352 (https://doi.org/10.1016/j.ica.2018.08.029)

A. Tavman, Spectrochim. Acta A 63 (2006) 343 (https://doi.org/10.1016/j.saa.2005.05.020)

D. Kanamori, Y. Yamada, A. Onoda, T. A. Okamura, S. Adachi, H. Yamamoto, N. Ueyama, Inorg. Chim. Acta 358 (2005) 331 (https://doi.org/10.1016/j.ica.2004.09.014)

V. M. Leovac, L. S. Jovanović, V. S. Čečljević, L. J. Bjwlica, V. B. Arion, N. V. Gerbelu, Polyhedron 13 (1994) 3005 (https://doi.org/10.1016/S0277-5387(00)83421-X)

N. Sundaraganesan, C. Meganathan, B. Anand, C. Lapouge, Spectrochim. Acta A 66 (2007) 773 (https://doi.org/10.1016/j.saa.2006.04.025)

D. Mahadevan, S. Periandy, M. Karabacak, S. Ramalingam, Spectrochim. Acta A 82 (2011) 481 (https://doi.org/10.1016/j.saa.2011.07.082)

P. E. Kazin, M. A. Pogosova, L. A. Trusov, I. V. Kolesnik, O. V. Magdysyuk, R. E. Dinnebier, J. Solid State Chem. 237 (2016) 349 (https://doi.org/10.1016/j.jssc.2016.03.004)

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., John Wiley & Sons, New York, USA, 1997

A. Tavman, A. Z. Elmal, D. Gürbüz, M. Hacioglu, A. S. Birteksöz Tan, A. Cinarli, Rev. Roum. Chim. 68 (2023) 49 (https://doi.org/10.33224/rrch.2023.68.1-2.05).